首页> 外文期刊>Molecular biology of the cell >Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization
【24h】

Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization

机译:线粒体形态和活性调节果蝇细胞化中的沟进入和收缩环动态

获取原文
           

摘要

Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.
机译:线粒体是在许多生物中孕制的母体。线粒体形态和活动调节对于细胞存活,分化和迁移至关重要。尚未实施早期胚轴胚胎发生中的线粒体动力学和在形态发生事件中的分析。在我们的研究中,我们发现线粒体形态调控在果蝇胚胎发生中细胞形成中的关键作用。我们发现线粒体较小,分散并在微管上翻译,并在细胞化期间沿着细胞长度逐渐分布。用于线粒体裂变蛋白的胚胎突变体,DRP1(母动相关蛋白1),在胚胎发生中死亡,并显示细胞内线粒体的积聚在细胞化中的基础侧。另外,DRP1突变体胚胎含有较低水平的活性氧(ROS)。 ROS耗尽预先显示出降低肌球蛋白II活性。 DRP1损失也导致膜沟槽的肌霉菌II耗尽,从而导致细胞高度和较大的细胞化接收环区域与肌蛋白II突变体中的细胞化类似。通过减少线粒体融合和增加超氧化物歧化酶突变体的细胞质RO来抑制DRP1突变体中的线粒体形态和细胞化缺陷。我们的数据表明,用于支持在果蝇胚胎中的细胞化的形态发生事件中的线粒体形态和活动的关键作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号