首页> 外文期刊>Microbiology Insights >The Matrix Revisited: Opening Night for the Pel Polysaccharide Across Eubacterial Kingdoms
【24h】

The Matrix Revisited: Opening Night for the Pel Polysaccharide Across Eubacterial Kingdoms

机译:重新审议矩阵:对脑袋界的PEL多糖开口夜晚

获取原文
       

摘要

Bacteria synthesize and export adhesive macromolecules to enable biofilm formation. These macromolecules, collectively called the biofilm matrix, are structurally varied and often unique to specific bacterial species or subspecies. This heterogeneity in matrix utilization makes it difficult to facilitate direct comparison between biofilm formation mechanisms of different bacterial species. Despite this, some matrix components, in particular the polysaccharides poly-β-1,6- N -acetyl-glucosamine (PNAG) and bacterial cellulose, are utilized by many Gram-negative species for biofilm formation. However, there is a very narrow distribution of these components across Gram-positive organisms, whose biofilm matrix determinants remain largely undiscovered. We found that a genetic locus required for the production of a biofilm matrix component of P. aeruginosa , the Pel polysaccharide, is widespread in Gram-negative bacteria and that there is a variant form of this cluster present in many Gram-positive bacterial species. We demonstrated that this locus is required for biofilm formation by Bacillus cereus ATCC 10987, produces a polysaccharide that is similar to Pel, and is post-translationally regulated by cyclic-3′,5′-dimeric-guanosine monophosphate (c-di-GMP) in a manner identical to P. aeruginosa . However, while the proposed mechanism for Pel production appears remarkably similar between B. cereus and P. aeruginosa , we identified several key differences between Gram-negative and Gram-positive Pel biosynthetic components in other monoderms. In particular, 4 different architectural subtypes of the c-di-GMP-binding component PelD were identified, including 1 found only in Streptococci that has entirely lost the c-di-GMP recognition domain. These observations highlight how existing multi-component bacterial machines can be subtly tweaked to adapt to the unique physiology and regulatory mechanisms of Gram-positive organisms. Collectively, our analyses suggest that the Pel biosynthetic locus is one of the most phylogenetically widespread biofilm matrix determinants in bacteria, and that its mechanism of production and regulation is extraordinarily conserved across the majority of organisms that possess it.
机译:细菌合成和出口粘合剂大分子以使生物膜形成能够。这些常规称为生物膜基质的大分子是结构变化的,并且通常是特异性细菌种类或亚种类的独特性。基质利用中的这种异质性使得难以促进不同细菌种类的生物膜形成机制之间的直接比较。尽管如此,一些基质组分,特别是多糖聚 - β-1,6-乙酰甘糖胺(PNAG)和细菌纤维素,通过许多革兰氏阴性物种用于生物膜形成。然而,在革兰氏阳性生物体上存在非常窄的这些组分的分布,其生物膜基质决定簇在很大程度上是未被发现的。我们发现,生产P. Aerginosa,PEL多糖的生物膜基质组分所需的遗传轨迹在革兰氏阴性细菌中普及,并且存在于许多革兰氏阳性细菌种类中的该簇的变体形式。我们证明,该基因座是由芽孢杆菌10987的生物膜形成所需的,产生类似于PEL的多糖,并且由环菌-3',5'-二聚体 - 胍醇单磷酸盐(C-Di-GMP)的翻译后调节。(C-Di-GMP )以与铜绿假单胞菌相同的方式。然而,虽然B.Cereus和P.铜绿假单胞菌之间所提出的PEL产量机制显着呈现出显着相似,但我们在其他单胚层中鉴定了革兰氏阴性和革兰氏阳性PEL生物合成组分之间的几个关键差异。特别地,鉴定了4种不同的C-Di-GMP结合组分PELD的不同建筑亚型,其中仅在具有完全丧失C-DI-GMP识别结构域的链球菌中发现的1。这些观察结果强调了可以巧妙地调整现有的多组分细菌机器,以适应革兰氏阳性生物的独特生理和调节机制。统称,我们的分析表明,PEL生物合成基因座是细菌中最受欢迎的普遍普遍的生物膜基质决定因素之一,其生产和调节机制在具有它的大多数生物体上是非常守恒的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号