首页> 外文期刊>Frontiers in Bioengineering and Biotechnology >Musculoskeletal Model Personalization Affects Metabolic Cost Estimates for Walking
【24h】

Musculoskeletal Model Personalization Affects Metabolic Cost Estimates for Walking

机译:肌肉骨骼模型个性化会影响步行的代谢成本估算

获取原文
           

摘要

Assessment of metabolic cost as a metric for human performance has expanded across various fields within the scientific, clinical, and engineering communities. As an alternative to measuring metabolic cost experimentally, musculoskeletal models incorporating metabolic cost models have been developed. However, to utilize these models for practical applications, the accuracy of their metabolic cost predictions requires improvement. Previous studies have reported the benefits of using personalized musculoskeletal models for various applications, yet no study has evaluated how model personalization affects metabolic cost estimation. This study investigated the effect of musculoskeletal model personalization on estimates of metabolic cost of transport (CoT) during post-stroke walking using three commonly used metabolic cost models. We analyzed walking data previously collected from two male stroke survivors with right-sided hemiparesis. The three metabolic cost models were implemented within three musculoskeletal modeling approaches involving different levels of personalization. The first approach used a scaled generic OpenSim model and found muscle activations via static optimization (SOGen). The second approach used a personalized EMG-driven musculoskeletal model with personalized functional axes but found muscle activations via static optimization (SOCal). The third approach used the same personalized EMG-driven model but calculated muscle activations directly from EMG data (EMGCal). For each approach, the muscle activation estimates were used to calculate each subject's cost of transport (CoT) at different gait speeds using three metabolic cost models (Umberger 2003, Umberger 2010, and Bhargava 2004). The calculated CoT values were compared with published CoT data as a function of walking speed, step length asymmetry, stance time asymmetry, double support time asymmetry, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, only SOCal and EMGCal with the Bhargava metabolic cost model were able to reproduce accurately published experimental trends between CoT and various clinical measures of walking asymmetry post-stroke. Tuning of the parameters in the different metabolic cost models could potentially resolve the observed CoT magnitude differences between model predictions and experimental measurements. Realistic CoT predictions may allow researchers to predict human performance, surgical outcomes, and rehabilitation outcomes reliably using computational simulations.
机译:评估代谢成本作为人类绩效的指标,在​​科学,临床和工程社区内的各个领域扩大。作为测量代谢成本的替代方案,已经开发出包含代谢成本模型的肌肉骨骼模型。然而,为了利用这些模型进行实际应用,其代谢成本预测的准确性需要改进。以前的研究报告了使用个性化肌肉骨骼模型进行各种应用的益处,但没有研究进行了评估了模型个性化如何影响代谢成本估算。本研究调查了肌肉骨骼模型个性化对使用三种常用代谢成本模型的行程中行走后运输(COT)代谢成本的估计的影响。我们分析了先前从两名男性中风幸存者收集的行走数据,具有右侧血管核分析。三种代谢成本模型在三种肌肉骨骼建模方法中实施,涉及不同级别的个性化。第一种方法使用缩放的通用OpenSim模型,并通过静态优化(Sogen)发现肌肉激活。第二种方法使用个性化EMG驱动的肌肉骨骼模型,具有个性化功能轴,但通过静态优化(SOCAL)发现肌肉激活。第三种方法使用了相同的个性化EMG驱动模型,但直接从EMG数据(EMGCAL)计算了肌肉激活。对于每种方法,使用三种代谢成本模型(Umberger 2003,Umberger 2010和Bhargava 2004),使用肌肉激活估计计算不同步态速度以不同的步态速度计算的每个受试者的运输成本(COT)。将计算的婴儿床值与公开的婴儿床数据进行比较,作为步行速度,步长不对称,姿势时间不对称,双支撑时间不对称,双支撑时间不对称,以及电机损伤的严重程度(即,Fugl-Meyer得分)。总体而言,只有具有Bhargava代谢成本模型的SoCAL和Emgcal能够在COT之间准确公布的高级实验趋势和行走不对称后行程的各种临床测量。在不同代谢成本模型中调整参数可能会解决模型预测和实验测量之间观察到的婴儿床幅度差异。现实的COT预测可能允许研究人员使用计算模拟可靠地预测人类性能,手术结果和康复结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号