...
首页> 外文期刊>Frontiers in Marine Science >Effects of Wind-Driven Lateral Upwelling on Estuarine Carbonate Chemistry
【24h】

Effects of Wind-Driven Lateral Upwelling on Estuarine Carbonate Chemistry

机译:风力驱动的横向上升对苯碳酸盐化学的影响

获取原文

摘要

Estuaries are productive ecosystems that support extensive vertebrate and invertebrate communities, but some have suffered from an accelerated pace of acidification in their bottom waters. A major challenge in the study of estuarine acidification is strong temporal and spatial variability of carbonate chemistry resulting from a wide array of physical forces such as winds, tides and river flows. Most past studies of carbonate system dynamics were limited to the along channel direction, while lateral dynamics received less attention. Recent observations in Chesapeake Bay showed strong lateral asymmetry in the partial pressure of carbon dioxide (pCO2) and air-sea CO2 flux during a single wind event, but comparable responses to different wind events has yet to be investigated. In this work, a coupled hydrodynamic-carbonate chemistry model is used to understand wind-driven variability in the estuarine carbonate system. It is found that wind-driven lateral upwelling ventilates high DIC (Dissolved Inorganic Carbon) and CO2 deep water and raises surface pCO2, thereby modifying the air-sea CO2 flux. The upwelling also advects low pH water onto the adjacent shoals and reduces the aragonite saturation state Ω_arag in these shallow water environments, producing large temporal pH fluctuations and low pH events. Regime diagrams are constructed to summarize the effects of wind events on temporal pH and Ω_arag fluctuations and the lateral gradients ?in DIC, pH and pCO2 in the estuary. This modeling study provides a mechanistic explanation for the observed wind-driven lateral variability in DIC and pCO2 and reproduces large pH and Ω_arag fluctuations that could be driven by physical forcing. Given that current and historic mainstem Bay oyster beds are located in shallow shoals affected by this upwelling, a large fraction of the oyster beds (100-300 km2) could be exposed to carbonate mineral under-saturated 〖(Ω〗_arag1) conditions during wind events. This effect should be considered in the management of acidification-sensitive species in estuaries.
机译:河口是生产性的生态系统,支持广泛的脊椎动物和无脊椎动物社区,但有些人遭受了底部水处的加速酸化率。雌卤酸酸化研究中的一项重大挑战是由广泛的物理力量(如风,潮汐和河流)的碳酸盐化学的强烈时间和空间变异。大多数过去的碳酸盐系统动态的研究都限于沿沟道方向,而横向动力学则受到更少的关注。在单个风事件中,切萨皮克湾的最近在Chesapeake Bay中的观察结果显示了二氧化碳(PCO2)和空中海洋二氧化碳通量的强侧不对称,但对不同风力事件的相当响应尚未进行研究。在这项工作中,耦合的流体动力学 - 碳酸盐化学模型用于了解碳酸盐系统中的风力驱动变异性。发现风力驱动的横向上升通风通风高DIC(溶解无机碳)和CO2深水并升高表面PCO2,从而改变空中海洋CO2通量。升值还在相邻的浅层上提高了低pH水,并在这些浅水环境中减少了基石饱和状态ω_arag,产生大的时间pH波动和低pH事件。构建方案图以总结风事件对时间pH和ω_arag波动和横向梯度的影响?在DIC,pH和PCO2中,在河口中。该建模研究为观察到的DIC和PCO2中观察到的风力驱动横向变异性提供了一种机械解释,并再现通过物理强制驱动的大的pH和ω_arag波动。鉴于当前和历史的主干湾牡蛎床位于受此升值影响的浅浅浅滩中,牡蛎床(100-300 km2)的大部分可能会暴露于碳酸盐矿质下饱和〖(ω〗_arag <1)条件在风赛期间。应考虑在河口酸化敏感物种的管理中考虑这种效果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号