首页> 外文期刊>Frontiers in Chemistry >Application of Quantum Computing to Biochemical Systems: A Look to the Future
【24h】

Application of Quantum Computing to Biochemical Systems: A Look to the Future

机译:量子计算在生物化学系统中的应用:展望未来

获取原文
获取外文期刊封面目录资料

摘要

Chemistry is considered as one of the more promising applications to science of near-term quantum computing. Recent work in transitioning classical algorithms to a quantum computer has led to great strides in improving quantum algorithms and illustrating their quantum advantage. Because of the limitations of near-term quantum computers, the most effective strategies split the work over classical and quantum computers. There is a proven set of methods in computational chemistry and materials physics that has used this same idea of splitting a complex physical system into parts that are treated at different levels of theory to obtain solutions for the complete physical system for which a brute force solution with a single method is not feasible. These methods are variously known as embedding, multi-scale, and fragment techniques and methods. We review these methods and then propose the embedding approach as a method for describing complex biochemical systems, with the parts not only treated with different levels of theory, but computed with hybrid classical and quantum algorithms. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with traditional algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with traditional algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future.
机译:化学被认为是近期量子计算科学的更具希望的应用之一。最近在转换到量子计算机的经典算法的工作已经导致改善量子算法并说明它们的量子优势方面的巨大进步。由于近期量子计算机的局限性,最有效的策略将工作分成古典和量子计算机。在计算化学和材料物理中有一种经过验证的方法,这些方法已经使用了与将复杂的物理系统分成不同级别的零件,以获得用于蛮力解决方案的完整物理系统的解决方案的零件单个方法是不可行的。这些方法各种称为嵌入,多尺度和片段技术和方法。我们审查了这些方法,然后提出了嵌入方法作为描述复杂生物化学系统的方法,这些部件不仅用不同的理论水平处理,而且用混合经典和量子算法计算。如果希望将重点扩展到含有有源区的生物化学分子,这些策略是至关重要的,这些分子不能用古典计算机上的传统算法正确解释无法正确解释的生物化学分子。虽然我们在这里没有解决这个问题,但我们概述了该领域将在未来解决此类问题。如果希望将重点扩展到含有有源区的生物化学分子,这些策略是至关重要的,这些分子不能用古典计算机上的传统算法正确解释无法正确解释的生物化学分子。虽然我们在这里没有解决这个问题,但我们概述了该领域将在未来解决此类问题。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号