首页> 外文期刊>Frontiers in Chemistry >Theoretical Design of Dithienopicenocarbazole-Based Molecules by Molecular Engineering of Terminal Units Toward Promising Non-fullerene Acceptors
【24h】

Theoretical Design of Dithienopicenocarbazole-Based Molecules by Molecular Engineering of Terminal Units Toward Promising Non-fullerene Acceptors

机译:终端单位分子工程对非富勒烯受体的终端单位分子基于二苯甲酸咔唑基分子的理论设计

获取原文
           

摘要

Dithienopicenocarbazole (DTPC) as the kernel module in A-D-A non-fullerene acceptors (NFA) has been reported for its ultra-narrow bandgap, high power conversion efficiency and extremely low energy loss. To further improve the photovoltaic performance of DTPC based acceptors, molecular engineering of end-capped groups could be an effective method according to previous research. In this article, a class of acceptors were designed via bringing terminal units with enhanced electron-withdrawing ability to the DTPC central core. Their geometrical structures, frontier molecular orbitals, absorption spectrum, intramolecular charge transfer and energy loss have been systematically investigated on the basis of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Surprisingly, NFA 4 highlights the dominance for its increased open circuit voltages while NFA 2, 7, 8 exhibit great potential for their enhanced charge transfer and lower energy loss, corresponding to higher short-circuit current density. Our results also manifest that proper modifications of the terminal acceptor with extension of π-conjugation might bring improved outcomes for overall properties. Such measure could become a feasible strategy for the synthesis of new acceptors, thereby facilitating the advancement of organic solar cells.
机译:已经报道了作为A-D-A非富勒烯受体(NFA)中的内核模块的二苯甲酸甲基咔唑(DTPC)用于其超窄的带隙,高功率转换效率和极低的能量损失。为了进一步提高基于DTPC的受体的光伏性能,终端封端的分子工程可以是根据以前的研究的有效方法。在本文中,通过将终端单元带来具有增强的电子 - 汽油核心的终端单元来设计一类受护者。它们的几何结构,前沿分子轨道,吸收光谱,在密度泛函理论(DFT)和时间依赖性密度泛函理论(TD-DFT)计算的基础上得到了系统地研究了分子内电荷转移和能量损失。令人惊讶的是,NFA 4突出了其增加的开路电压的优势,而NFA 2,7,8表现出其增强的电荷转移和更低的能量损失的巨大潜力,对应于较高的短路电流密度。我们的结果表明,终端受体的适当修改具有π-缀合的延伸可能会带来完善的整体性质的结果。这种措施可能成为合成新受体的可行策略,从而促进了有机太阳能电池的进步。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号