首页> 外文期刊>Frontiers in Chemistry >Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications
【24h】

Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications

机译:社论:超分子纳米材料,用于工程,药物递送和医疗应用

获取原文
获取外文期刊封面目录资料

摘要

Programmed self-assembly and self-organization of carefully designed molecular monomers (Imai et al., 2018) has been widely explored to engineer stable nanostructures with the desired architecture and unique functionality (Lehn, 2015, 2017). This bottom-up approach could not only overcome design barriers associated with traditional molecular manufacturing at the nanoscale, but it could also endow the desired assemblies with adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions holding the architecture together. Hence, these supramolecular architectures may constitute the basis for novel smart nanomaterials with improved properties such as in vitro and in vivo physicochemical stability (Park et al., 2007), efficiency via drug loading improvement (Ahmed et al., 2019), exogenous environment adaptability (Pedersen et al., 2020), higher safety (Martin et al., 2020), manufacturability (Wren et al., 2020), and may have a broad range of applications with various interfaces, i.e., liquid/liquid (Prevot et al., 2018), solid/liquid (Couillaud et al., 2019), and gas/liquid (Manta et al., 2016; Corvis et al., 2018). Indeed, self-assembled systems (Beingessner et al., 2016; Mohamed et al., 2019) have been developed and widely explored in drug delivery (Chen et al., 2011; Song et al., 2011; Desma?le et al., 2012; Mignet et al., 2012; Al Sabbagh et al., 2020), gene delivery (Manta et al., 2017; Do et al., 2019), biomedical engineering (Sun et al., 2012; Childs et al., 2013; Meng et al., 2013; Puzan et al., 2018; Zhou et al., 2020), medicine (Journeay et al., 2008, 2009; Sun et al., 2014), and diagnostics. This body of work has led to the emergence of the field of supramolecular nanomedicine, which is the focus of this Research Topic for Frontiers in Chemistry (Figure 1).
机译:编程的自组装和精心设计的分子单体的自我组织(Imai等,2018)已被广泛探索工程稳定的纳米结构,具有所需的架构和独特的功能(Lehn,2015,2017)。这种自下而上的方法不仅可以在纳米级克服与传统分子制造相关的设计障碍,但由于持有的非共价相互作用的动态性质,它也可以赋予所需的组件,其具有适应性,可调性和刺激响应性建筑在一起。因此,这些超分子架构可以构成新型智能纳米材料的基础,其具有改进的性质,例如体外和体内物理化学稳定性(Park等,2007),通过药物载荷改善的效率(Ahmed等,2019),外源环境适应性(Pedersen等,2020),安全性更高(Martin等,2020),可制造性(Wren等,2020),并且可以具有各种界面的广泛应用,即液/液(PREVOT等人,2018年),固体/液体(Couillaud等,2019)和燃气/液体(Manta等,2016; Corvis等,2018)。实际上,自组装系统(Witesner等,2016; Mohamed等,2019)已经开发并广泛探讨了药物交付(Chen等,2011; Song等,2011; Desma?Le等。,2012; mignet等,2012年,2012年,2020),基因递送(Manta等,2017; Do等,2019),生物医学工程(Sun等,2012; Childs et Al。,2013; Meng等人,2013; Puzan等,2018;周等,2020),医学(Journeay等,2008,2009; Sun等,2014)和诊断。这项工作机构导致了超分子纳米医生领域的出现,这是化学前方的研究主题的重点(图1)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号