首页> 外文期刊>Geoscientific Model Development Discussions >Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7
【24h】

Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7

机译:荷兰大气大气大型涡流仿真模型DALES4.1-M7中的显式气溶胶互动

获取原文
           

摘要

Large-eddy simulation (LES) models are an excellent tool to improve our understanding of aerosol–cloud interactions (ACI). We introduce a prognostic aerosol scheme with multiple aerosol species in the Dutch Atmospheric Large-Eddy Simulation model (DALES), especially focused on simulating the impact of cloud microphysical processes on the aerosol population. The numerical treatment of aerosol activation is a crucial element for simulating both cloud and aerosol characteristics. Two methods are implemented and discussed: an explicit activation scheme based on κ-K?hler theory and a more classic approach using updraught strength. Sample model simulations are based on the Rain in Shallow Cumulus over the Ocean (RICO) campaign, characterized by rapidly precipitating warm-phase shallow cumulus clouds. We find that in this pristine ocean environment virtually all aerosol mass in cloud droplets is the result of the activation process, while in-cloud scavenging is relatively inefficient. Despite the rapid formation of precipitation, most of the in-cloud aerosol mass is returned to the atmosphere by cloud evaporation. The strength of aerosol processing through subsequent cloud cycles is found to be particularly sensitive to the activation scheme and resulting cloud characteristics. However, the precipitation processes are considerably less sensitive. Scavenging by precipitation is the dominant source for in-rain aerosol mass. About half of the in-rain aerosol reaches the surface, while the rest is released by evaporation of falling precipitation. The effect of cloud microphysics on the average aerosol size depends on the balance between the evaporation of clouds and rain and ultimate removal by precipitation. Analysis of typical aerosol size associated with the different microphysical processes shows that aerosols resuspended by cloud evaporation have a radius that is only 5% to 10% larger than the originally activated aerosols. In contrast, aerosols released by evaporating precipitation are an order of magnitude larger.
机译:大涡模拟(LES)型号是改善我们对气溶胶云相互作用(ACI)了解的绝佳工具。我们在荷兰大气大气大型仿真模型(博物馆)中介绍了一种具有多种气溶胶物种的预后气溶胶方案,特别是专注于模拟云微动物过程对气溶胶种群的影响。气溶胶活化的数值处理是模拟云和气溶胶特性的关键因素。实施和讨论了两种方法:基于κ-k·赫勒理论的显式激活方案和使用上行强度的更经典的方法。样本模型模拟基于海洋(RICO)运动的浅层积云的雨,其特征在于快速促使温度浅层云云。我们发现,在这个原始的海洋环境中,几乎云液滴中的所有气溶胶质量是激活过程的结果,而云扫描相对效率相对效率。尽管沉淀的快速形成,但大多数云血清醇质量通过云蒸发返回大气。发现通过随后的云循环的气溶胶加工强度对激活方案特别敏感,并产生云特性。然而,沉淀过程的敏感性很小。通过降水扫除是雨水溶气质质量的主要来源。大约一半的雨水气溶胶到达表面,而其余的通过蒸发降水蒸发释放。云微妙对平均气溶胶大小的影响取决于云蒸发和雨水蒸发与沉淀的最终移除的平衡。典型气溶胶尺寸与不同的微药物方法相关的分析表明,云蒸发重新悬浮的气溶胶具有比最初活化的气溶胶大的5%至10%。相反,通过蒸发沉淀释放的气溶胶是较大的数量级。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号