首页> 外文期刊>Geoscientific Model Development Discussions >Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8
【24h】

Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8

机译:拟牛顿大气化学模拟方法:在UKCA UM VN10.8中实现

获取原文
           

摘要

A key and expensive part of coupled atmospheric chemistry–climate model simulations is the integration of gas-phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly coupled network of differential equations (DEs). There exist orders of magnitude variability in the lifetimes of the different species present in the atmosphere, and so solving these DEs to obtain robust numerical solutions poses a stiff problem. With newer models having more species and increased complexity, it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy. While a sound way to handle stiff systems is by using implicit DE solvers, the computational costs for such solvers are high due to internal iterative algorithms (e.g. Newton–Raphson methods). Here, we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by blending the existing Newton–Raphson (NR) method with quasi-Newton (QN) methods, whereby the QN routine is called only on selected iterations of the solver. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealised box-model environment and under realistic 3-D atmospheric conditions. The box-model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27% of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3-D simulations show that our moderate modification, by means of using a blended method for the chemistry solver, speeds up the chemistry routines by around 13%, resulting in a net improvement in overall runtime of the full model by approximately 3% with negligible loss in the accuracy. The blended QN method also improves the robustness of the solver, reducing the number of grid cells which fail to converge after 50 iterations by 40%. The relative differences in chemical concentrations between the control run and that using the blended QN method are of order ?~?10?7 for longer-lived species, such as ozone, and below the threshold for solver convergence (10?4) almost everywhere for shorter-lived species such as the hydroxyl radical.
机译:耦合大气化学气候模型模拟的一个关键和昂贵的部分是气相化学的整合,这涉及数十种物种和数百个反应。这些物种和反应形成高度耦合的微分方程网络(DES)。在大气中存在的不同物种的寿命中存在幅度变异性,因此解决这些DES以获得稳健的数值溶液造成刚性问题。对于具有更多种类和复杂性的更新模型,现在具有越来越重要的化学解决方案,可以越来越重要,可以减少时间但保持准确性。虽然处理僵硬系统的声音方式是通过使用隐式DE求解器,但由于内部迭代算法(例如Newton-Raphson方法),这种求解器的计算成本很高。在这里,我们提出了一种方法,即用于隐式的DE求解器,其提高了它们在代码中相对较小的修改的收敛速度和鲁棒性。我们通过将现有的Newton-Raphson(NR)方法与准牛顿(QN)方法混合来实现这一目标,由此仅在求解器的选定迭代上调用QN例程。我们在英国化学和气溶胶(UKCA)模型上的数值实验测试了我们的方法,其中英国遇见办公室统一模型套件的一部分,在理想化的箱式环境和现实的3-D大气条件下运行。盒式模型测试表明,所提出的方法显着减少了解熔断常规中花费的时间,每个QN呼叫呼叫到全部NR例程的呼叫的27%。在一系列化学环境上进行了一系列实验,用盒式模型进行,找到呼叫QN例程的最佳迭代步骤,这导致NR迭代总数的最大值,同时最大限度地减少导致不稳定和维护求解器的机会准确性。 3-D模拟表明,我们的适度修改,通过使用混合方法的化学求解器,将化学惯例加速约13%,导致整个模型的整体运行时间净改善约3%可忽略不计的准确性。混合的QN方法还改善了求解器的鲁棒性,减少了在50次迭代后未收敛的网格细胞数量40%。控制运行之间的化学浓度和使用混合QN方法的相对差异是顺序的?〜?10?7,用于更长的物种,例如臭氧,以及求解器收敛(10≤4)的阈值几乎无处不在对于较短的物种,如羟基自由基。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号