...
首页> 外文期刊>Geoscientific Model Development Discussions >Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
【24h】

Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration

机译:UVIC-ESCM 2.9中最优基于非Redfield Plankton-Ecosystem模型(OPEM V1.1) - 第2部分:灵敏度分析和模型校准

获取原文
           

摘要

We analyse 400 perturbed-parameter simulations for two configurations of an optimality-based plankton–ecosystem model (OPEM), implemented in the University of Victoria Earth System Climate Model (UVic-ESCM), using a Latin hypercube sampling method for setting up the parameter ensemble. A likelihood-based metric is introduced for model assessment and selection of the model solutions closest to observed distributions of NO3-, PO43-, O2, and surface chlorophyll?a concentrations. The simulations closest to the data with respect to our metric exhibit very low rates of global N2 fixation and denitrification, indicating that in order to achieve rates consistent with independent estimates, additional constraints have to be applied in the calibration process. For identifying the reference parameter sets, we therefore also consider the model's ability to represent current estimates of water-column denitrification. We employ our ensemble of model solutions in a sensitivity analysis to gain insights into the importance and role of individual model parameters as well as correlations between various biogeochemical processes and tracers, such as POC export and the NO3- inventory. Global O2 varies by a factor of?2 and NO3- by more than a factor of?6 among all simulations. Remineralisation rate is the most important parameter for O2, which is also affected by the subsistence N quota of ordinary phytoplankton (Q0,phyN) and zooplankton maximum specific ingestion rate. Q0,phyN is revealed as a major determinant of the oceanic NO3- pool. This indicates that unravelling the driving forces of variations in phytoplankton physiology and elemental stoichiometry, which are tightly linked via Q0,phyN, is a prerequisite for understanding the marine nitrogen inventory.
机译:我们分析了在维多利亚地球系统气候模型(UVIC-ESCM)大学的基于最优基于Plankton-Ecosystem Model(OPEM)配置的400个扰动参数模拟,使用拉丁超立体采样方法来设置参数合奏。介绍了基于可能的度量,用于模型评估和选择最接近No3-,PO43-,O2和表面叶绿素的分布的模型解决方案?浓度。最接近我们的度量的数据的模拟表现出极低的全局N2固定和反硝化率,表明为了实现与独立估计一致的速率,必须在校准过程中应用附加约束。因此,为了识别参考参数集,我们还考虑模型代表水列反硝化的当前估计的能力。我们在敏感性分析中使用模型解决方案的集合,以获得各种模型参数的重要性和作用的见解以及各种生物地球化学过程和示踪剂之间的相关性,例如PoC导出和No3-库存。全球O2在所有模拟中变化了2个,NO 3 - 超过一个以上的一个以上?6。 Remineralation率是O2最重要的参数,其也受普通植物(Q0,Phyn)和Zooplankton最大特异性摄取率的生成N配额的影响。 Q0,Phyn被揭示为海洋No3-池的主要决定因素。这表明通过Q0,Phyn紧密连接的浮游植物生理学和元素化学计量的变异的驱动力是理解海洋氮素库存的先决条件。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号