首页> 外文期刊>Geoscientific Model Development Discussions >Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0
【24h】

Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0

机译:使用SAM-ASP版本1.0模拟森林火灾羽流分散,化学和气溶胶形成

获取原文
           

摘要

Biomass burning is a major source of trace gases and aerosols that can ultimately impact health, air quality, and climate. Global and regional-scale three-dimensional Eulerian chemical transport models (CTMs) use estimates of the primary emissions from fires and can unphysically mix them across large-scale grid boxes, leading to incorrect estimates of the impact of biomass burning events. On the other hand, plume-scale process models allow for explicit simulation and examination of the chemical and physical transformations of trace gases and aerosols within biomass burning smoke plumes, and they may be used to develop parameterizations of this aging process for coarser grid-scale models. Here we describe the coupled SAM-ASP plume-scale process model, which consists of coupling the large-eddy simulation model, the System for Atmospheric Modelling (SAM), with the detailed gas and aerosol chemistry model, the Aerosol Simulation Program (ASP). We find that the SAM-ASP version 1.0 model is able to correctly simulate the dilution of CO in a California chaparral smoke plume, as well as the chemical loss of NOx, HONO, and NH3 within the plume, the formation of PAN and O3, the loss of OA, and the change in the size distribution of aerosols as compared to measurements and previous single-box model results. The newly coupled model is able to capture the cross-plume vertical and horizontal concentration gradients as the fire plume evolves downwind of the emission source. The integration and evaluation of SAM-ASP version 1.0 presented here will support the development of parameterizations of near-source biomass burning chemistry that can be used to more accurately simulate biomass burning chemical and physical transformations of trace gases and aerosols within coarser grid-scale CTMs.
机译:生物质燃烧是痕量气体和气溶胶的主要来源,最终会影响健康,空气质量和气候。全球和区域规模的三维欧拉化学传输模型(CTMS)使用火灾初级排放的估计,并且可以在大型网格盒中解释它们,导致生物质燃烧事件的影响不正确估计。另一方面,羽量级的过程模型允许明确模拟和检查痕量气体和燃烧烟雾羽毛内的痕量气体和气溶胶的化学和物理转化,它们可用于开发这种老化过程的参数,以便造型粗略网格级楷模。在这里,我们描述了耦合的SAM-ASP羽量级过程模型,包括耦合大涡仿真模型,大气建模(SAM)系统,具有详细的气体和气溶胶化学模型,气溶胶仿真程序(ASP) 。我们发现SAM-ASP版本1.0型号能够正确模拟加州小粉烟雾羽毛中的CO稀释,以及羽流内NOx,Hono和NH3的化学损失,PAN和O3的形成,与测量和先前的单箱模型结果相比,OA的损失以及气溶胶尺寸分布的变化。当火羽流量的向下推向发射源时,新耦合模型能够捕获跨羽垂直和水平浓度梯度。这里展示的SAM-ASP版本1.0的集成和评估将支持近源生物量燃烧化学参数化的开发,这些化学化学的参数化可用于更准确地模拟粗糙栅格CTMS内的痕量气体和气溶胶的生物量燃烧的化学和物理转化。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号