...
首页> 外文期刊>Geoscientific Model Development Discussions >Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
【24h】

Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform

机译:优化在异构许多核心超级计算平台上的高分辨率社区地球系统模型

获取原文
           

摘要

With semiconductor technology gradually approaching its physical and thermal limits, recent supercomputers have adopted major architectural changes to continue increasing the performance through more power-efficient heterogeneous many-core systems. Examples include Sunway TaihuLight that has four management processing elements (MPEs) and 256 computing processing elements (CPEs) inside one processor and Summit that has two central processing units (CPUs) and six graphics processing units (GPUs) inside one node. Meanwhile, current high-resolution Earth system models that desperately require more computing power generally consist of millions of lines of legacy code developed for traditional homogeneous multicore processors and cannot automatically benefit from the advancement of supercomputer hardware. As a result, refactoring and optimizing the legacy models for new architectures become key challenges along the road of taking advantage of greener and faster supercomputers, providing better support for the global climate research community and contributing to the long-lasting societal task of addressing long-term climate change. This article reports the efforts of a large group in the International Laboratory for High-Resolution Earth System Prediction (iHESP) that was established by the cooperation of Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM), Texas AM University (TAMU), and the National Center for Atmospheric Research (NCAR), with the goal of enabling highly efficient simulations of the high-resolution (25km atmosphere and 10km ocean) Community Earth System Model (CESM-HR) on Sunway TaihuLight. The refactoring and optimizing efforts have improved the simulation speed of CESM-HR from 1SYPD (simulation years per day) to 3.4SYPD (with output disabled) and supported several hundred years of pre-industrial control simulations. With further strategies on deeper refactoring and optimizing for remaining computing hotspots, as well as redesigning architecture-oriented algorithms, we expect an equivalent or even better efficiency to be gained on the new platform than traditional homogeneous CPU platforms. The refactoring and optimizing processes detailed in this paper on the Sunway system should have implications for similar efforts on other heterogeneous many-core systems such as GPU-based high-performance computing (HPC) systems.
机译:随着半导体技术逐步接近其物理和热限制,最近的超级计算机已经采用了主要的架构变革,继续通过更多高效的异构许多核心系统继续提高性能。示例包括Sunway ToIhulight,具有四个管理处理元件(MPE)和256个计算处理元件(CPE),其中一个处理器和峰值,在一个节点内具有两个中央处理单元(CPU)和六个图形处理单元(GPU)。同时,目前迫切需要更多计算能力的电流高分辨率地球系统模型通常由为传统的同类多核处理器开发的数百万条传统代码组成,并且不能自动从超级计算机硬件的进步中受益。因此,重构和优化新架构的传统模型成为利用更环保和更快的超级计算机的道路的关键挑战,为全球气候研究界提供更好的支持,并为解决长期的持久社会任务提供贡献术语气候变化。本文报告了一大群在国际高分辨率地球系统预测(IHESP)实验室的努力,这是由青岛试点国家实验室的海洋科学技术(QNLM),德克萨斯州大学(TAMU)的合作,以及国家大气研究中心(NCAR),目标是在Sunway Toihulight上实现高分辨率(25公里氛围和10km海洋)社区地球系统模型(CESM-HR)的高效模拟。重构和优化努力从1SYPD(每天模拟年份)提高了CESM-HR的仿真速度至3.4SYPD(随着输出禁用)并支持几百年的预工业控制模拟。在更深入的重构和优化剩余计算热点以及重新设计架构算法的进一步策略,我们预计新平台上的等效甚至更好的效率就会比传统的同类CPU平台获得。在Sunway系统上本文详述的重构和优化过程应对其他异构多核系统(如GPU的高性能计算(HPC)系统)有影响。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号