...
首页> 外文期刊>Geoscientific Model Development Discussions >Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe
【24h】

Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe

机译:研究在欧洲WRFV3.8.1在镇压区域模型实验中解决气溶胶相互作用的敏感性

获取原文
           

摘要

In this work we present downscaling experiments with the Weather Research and Forecasting model (WRF) to test the sensitivity to resolving aerosol–radiation and aerosol–cloud interactions on simulated regional climate for the EURO-CORDEX domain. The sensitivities mainly focus on the aerosol–radiation interactions (direct and semi-direct effects) with four different aerosol optical depth datasets (Tegen, MAC-v1, MACC, GOCART) being used and changes to the aerosol absorptivity (single scattering albedo) being examined. Moreover, part of the sensitivities also investigates aerosol–cloud interactions (indirect effect). Simulations have a resolution of 0.44° and are forced by the ERA-Interim reanalysis. A basic evaluation is performed in the context of seasonal-mean comparisons to ground-based (E-OBS) and satellite-based (CM SAF SARAH, CLARA) benchmark observational datasets. The impact of aerosols is calculated by comparing it against a simulation that has no aerosol effects. The implementation of aerosol–radiation interactions reduces the direct component of the incoming surface solar radiation by 20%–30% in all seasons, due to enhanced aerosol scattering and absorption. Moreover the aerosol–radiation interactions increase the diffuse component of surface solar radiation in both summer (30%–40%) and winter (5%–8%), whereas the overall downward solar radiation at the surface is attenuated by 3%–8%. The resulting aerosol radiative effect is negative and is comprised of the net effect from the combination of the highly negative direct aerosol effect (?17 to ?5Wm?2) and the small positive changes in the cloud radiative effect (+5Wm?2), attributed to the semi-direct effect. The aerosol radiative effect is also stronger in summer (?12Wm?2) than in winter (?2Wm?2). We also show that modelling aerosol–radiation and aerosol–cloud interactions can lead to small changes in cloudiness, mainly regarding low-level clouds, and circulation anomalies in the lower and mid-troposphere, which in some cases, mainly close to the Black Sea in autumn, can be of statistical significance. Precipitation is not affected in a consistent pattern throughout the year by the aerosol implementation, and changes do not exceed ±5% except for the case of unrealistically absorbing aerosol. Temperature, on the other hand, systematically decreases by ?0.1 to ?0.5°C due to aerosol–radiation interactions with regional changes that can be up to ?1.5°C.
机译:在这项工作中,我们将缩小实验与天气研究和预测模型(WRF)进行了解,以测试欧洲驯料领域模拟区域气候解决气溶胶辐射和气溶胶云相互作用的敏感性。敏感度主要关注气溶胶 - 辐射相互作用(直接和半直接效应),使用四种不同的气溶胶光学深度数据集(TEGEN,MAC-V1,MACC,GOCART),并改变气溶胶吸收率(单散射Albedo)是检查。此外,部分敏感性还研究了气溶胶云相互作用(间接效应)。模拟具有0.44°的分辨率,并由ERA-临时再分析施加。在季节性平均比较的背景下进行基本的(E-OBS)和基于卫星(CM SAF SARAH,CLARA)基准测试数据集的基本评估。通过将其与没有气溶胶效应的模拟进行比较来计算气溶胶的影响。由于增强的气溶胶散射和吸收,气溶胶 - 辐射相互作用的实施将进入的表面太阳辐射的直接成分降低了20%-30%。此外,气溶胶 - 辐射相互作用在夏季(30%-40%)和冬季(5%-8%)(5%-8%)增加了表面太阳辐射的漫射组分,而该表面的整体下向太阳辐射衰减3%-8 %。由此产生的气溶胶辐射效果是阴性的,并且由高度负直接气溶胶效应(α17至5wm≤2)的组合来组成净效应,并且云辐射效果的小阳性变化(+ 5WM?2),归因于半直接效果。夏季(?12WM?2)的气溶胶辐射效果也比在冬天(?2WM?2)更强。我们还表明,造型气溶胶和气溶胶云相互作用可能导致浑浊的较小变化,主要关于低水平云,下层和中层的循环异常,这在某些情况下主要靠近黑海在秋季,可以具有统计意义。除了不切实际地吸收气溶胶的情况外,沉淀在全年全年不受一致的模式的影响不一致,并且变化不超过±5%。另一方面,温度通过与可能达到的区域变化的气溶胶 - 辐射相互作用系统地减少0.1至0.5°C。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号