首页> 外文期刊>Geoscientific Model Development Discussions >Dynamic upscaling of decomposition kinetics for carbon cycling models
【24h】

Dynamic upscaling of decomposition kinetics for carbon cycling models

机译:碳循环模型分解动力学的动态上升

获取原文
           

摘要

The distribution of organic substrates and microorganisms in soils is spatially heterogeneous at the microscale. Most soil carbon cycling models do not account for this microscale heterogeneity, which may affect predictions of carbon (C) fluxes and stocks. In this study, we hypothesize that the mean respiration rate R ̄ at the soil core scale (i)?is affected by the microscale spatial heterogeneity of substrate and microorganisms and (ii)?depends upon the degree of this heterogeneity. To theoretically assess the effect of spatial heterogeneities on R ̄, we contrast heterogeneous conditions with isolated patches of substrate and microorganisms versus spatially homogeneous conditions equivalent to those assumed in most soil C models. Moreover, we distinguish between biophysical heterogeneity, defined as the nonuniform spatial distribution of substrate and microorganisms, and full heterogeneity, defined as the nonuniform spatial distribution of substrate quality (or accessibility) in addition to biophysical heterogeneity. Four common formulations for decomposition kinetics (linear, multiplicative, Michaelis–Menten, and inverse Michaelis–Menten) are considered in a coupled substrate–microbial biomass model valid at the microscale. We start with a 2-D domain characterized by a heterogeneous substrate distribution and numerically simulate organic matter dynamics in each cell in the domain. To interpret the mean behavior of this spatially explicit system, we propose an analytical scale transition approach in which microscale heterogeneities affect R ̄ through the second-order spatial moments (spatial variances and covariances). The model assuming homogeneous conditions was not able to capture the mean behavior of the heterogeneous system because the second-order moments cause R ̄ to be higher or lower than in the homogeneous system, depending on the sign of these moments. This effect of spatial heterogeneities appears in the upscaled nonlinear decomposition formulations, whereas the upscaled linear decomposition model deviates from homogeneous conditions only when substrate quality is heterogeneous. Thus, this study highlights the inadequacy of applying at the macroscale the same decomposition formulations valid at the microscale and proposes a scale transition approach as a way forward to capture microscale dynamics in core-scale models.
机译:土壤中有机底物和微生物的分布在微尺寸在空间异质。大多数土壤碳循环模型不考虑这种微观异质性,这可能影响对碳(C)助熔剂和股票的预测。在这项研究中,我们假设土壤核心尺度(i)的平均呼吸速率?受到底物和微生物的微观空间异质性的影响,并且(II)是α的影响。取决于这种异质性的程度。从理论上评估空间异质性对R¯的影响,我们将异质条件与分离的底物和微生物果实对比与大多数土壤C模型中假设的空间均匀条件相比。此外,我们区分生物物理异质性,定义为基材和微生物的不均匀空间分布,以及除了生物物理异质性之外,定义为基板质量(或可访问性)的非均匀空间分布。在偶联的底物 - 微生物生物量模型中考虑了四种分解动力学(线性,乘法,MICHAelis-MENTEN和逆MICHAELIS-MENTEN)的四种常见配方。我们从一个2-D域开始,其特征在于异质衬底分布,并在域中的每个细胞中进行数值模拟有机物动力学。为了解释这种空间明确的系统的平均行为,我们提出了一种分析规模转换方法,其中微观异质性通过二阶空间矩(空间差异和考义)影响R¯。假设均匀条件的模型无法捕获异质系统的平均行为,因为二阶时刻导致r¯更高或低于均匀系统,这取决于这些时刻的标志。空间异质性的这种效果出现在升高的非线性分解制剂中,而升高的线性分解模型仅当基板质量是异质时才能偏离均匀的条件。因此,该研究突出了在Macroscale在Microscale上有效的相同分解制剂施加的不足,并且提出了一种规模的转换方法,作为核心尺度模型中的微观动态的前进方式。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号