...
首页> 外文期刊>Genome Biology and Evolution >Can Green Algal Plastid Genome Size Be Explained by DNA Repair Mechanisms?
【24h】

Can Green Algal Plastid Genome Size Be Explained by DNA Repair Mechanisms?

机译:DNA修复机制可以解释绿藻塑体基因组大小吗?

获取原文
           

摘要

A major finding in organelle biology over the past decade is that land plant mitochondrial genomes, which are the largest among eukaryotes, can have a “Jekyll and Hyde” mutational pattern: low for synonymous sites, high for intergenic ones. This has led to the theory that double-strand breaks (DSBs) in the intergenic DNA of plant mitogenomes are repaired by inaccurate mechanisms, such as break-induced replication, which can result in large insertions and, thus, could explain why these genomes are so prone to expansion. But how universal is this theory? Can it apply to other giant organelle DNAs, such as the massive plastid DNAs (ptDNAs) of chlamydomonadalean green algae? Indeed, it can. Analysis of the expanded plastomes from two distinct isolates of the unicellular chlamydomonadalean Chlorosarcinopsis eremi uncovered exceptionally low rates of synonymous substitution in the coding regions but high substitution rates, including frequent indels, in the noncoding ptDNA, mirroring the trend from land plant mitogenomes. Remarkably, nearly all of the substitutions and indels identified in the noncoding ptDNA of C.?eremi occur adjacent to or within short inverted palindromic repeats, suggesting that these elements are mutational hotspots. Building upon earlier studies, I propose that these palindromic repeats are predisposed to DSBs and that error-prone repair of these breaks is contributing to genomic expansion. Short palindromic repeats are a common theme among bloated plastomes, including the largest one on record, meaning that these data could have wide-reaching implications for our understanding of ptDNA expansion.
机译:在过去十年中有细胞石生物学的重大发现是土地植物线粒体基因组织,其在真核生物中最大,可以具有“jekyll和海德”的突变模式:对同义位点的低,对于代际基位为低。这导致了植物毒蛛的代表性DNA中的双链断裂(DSB)的理论通过不准确的机制修复,例如断裂诱导的复制,这可能导致大插入,因此可以解释为什么这些基因组是所以容易扩张。但是这个理论的普遍性是如何?它可以适用于其他巨型细胞器DNA,如衣原体的大规模塑料DNA(PTDNAS)的衣原体藻类藻类吗?实际上,它可以。分析来自单细胞衣原体的两种不同分离物的扩张塑性含量Eremi在编码区中的同义替代的异常低速率,但是在非分量PTDNA中,包括频繁的诱导率,包括来自土地植物毒蛛的趋势。值得注意的是,几乎所有在C.?Eremi的非编码PTDNA中鉴定的替代品和吲哚,在短的倒的回文重复中发生,表明这些元素是突变热点。建立早期的研究,我建议这些回文重复被倾向于DSB,并且这些破裂的错误修复是有助于基因组扩张。短文重复是臃肿的塑料中的常见主题,包括最大的记录,这意味着这些数据可能对我们对PTDNA扩张的理解具有巨大影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号