...
首页> 外文期刊>EMBO Molecular Medicine >μLED‐based optical cochlear implants for spectrally selective activation of the auditory nerve
【24h】

μLED‐based optical cochlear implants for spectrally selective activation of the auditory nerve

机译:基于μLED的光学耳蜗植入物,用于光谱选择性激活听觉神经

获取原文
           

摘要

Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re‐connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virus‐mediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multi‐channel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thin‐film light‐emitting diodes (μLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of μLED‐based oCIs for spectrally selective activation of the auditory nerve. Synopsis Electrical cochlear implants effectiveness in individuals remains limited by the spread of the electric current in the cochlea. This study explores the potential of optogenetics for hearing restoration through combining optogenetic manipulation of the auditory nerve with microsystems engineering. μLED‐based optical cochlear implants (oCI) enable stimulation of the rodent auditory nerve. The strength of induced responses scales with the number of recruited emitters. μLED‐evoked neural responses are tonotopic and spectrally selective. The combination of gene therapy and microsystems engineering enables optical activation of the auditory nerve with higher spectral precision in gerbils.
机译:电气耳蜗植入物(ECIS)部分恢复听力并使语音理解为超过500万用户,从而将聋哑患者重新连接到围绕它们的听觉场景。然而,ECIS患有有限的光谱选择性,由电流围绕每个电极接触产生的电流,并在存在背景噪声存在下引起差的语音识别。视听神经的光学刺激可能会克服这种限制,因为光可以方便地限制在太空中。在此,我们组合病毒介导的耳蜗螺旋神经节神经元(SGNS)和微系统工程的病毒介导的致敏操纵,以建立成年蒙古大床的急性多通道光学耳蜗植入物(OCI)刺激。响应基于16微粒薄膜发光二极管(μLED)诱发听觉途径的迂回激活,具有高光谱选择性和听力和聋人的适度功率要求。这些结果证明了μL基于oS的可行性,用于对听觉神经的光谱选择性激活。简介电气耳蜗植入物在耳蜗中电流的扩散仍然受到限制。本研究探讨了光源,通过与微妙的操纵与微系统工程相结合的致敏操纵来探讨听力恢复。基于μLED的光学耳蜗植入物(OCI)能够刺激啮齿动物听觉神经。诱导的响应强度与招募发射者的数量相比。诱发诱发的神经反应是迂回和光谱选择性的。基因治疗和微系统工程的组合能够在Gerbils中具有更高的光谱精度的听觉神经的光学激活。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号