首页> 外文期刊>Energy Reports >Analyzing the applicability of in situ heating methods in the gas production from natural gas hydrate-bearing sediment with field scale numerical study
【24h】

Analyzing the applicability of in situ heating methods in the gas production from natural gas hydrate-bearing sediment with field scale numerical study

机译:用现场规模数值研究分析原位加热方法在天然气水合物沉积物中的适用性

获取原文
           

摘要

For natural gas hydrate (NGH) exploitation, the in-situ electrical heating has been proved as a promising production method in laboratory experimental scale. But the results in this scale are difficult to reliably reflect field trials due to limitations in the size of the reactor. So, by TOUGH HYDRATE software, this paper stimulates hydrate exploitation in field scale by in situ electrical heating. In addition, depressurization is applied as a comparison. Based on the analysis of several parameters like reservoir temperature and hydrate distribution, results show that although a larger heating power can result in a faster move of the decomposition front, the fast free gas production takes a large amount of sensible heat out of the reservoir. Also, the electrical heating effect is limited by the heat conductivity of formation in the field scale, so the heat promoting distance of the heating method is less than 10 m after five years production even with 1000 W/m of electrical heating power. A large amount of heat loss and the shortage of heating injection make the energy efficiency of it decreased significantly with the production time. So, large heating power cannot always remain fast gas and water production rates. Furthermore, the higher heating power does not mean a better exploitation effect. Thus, it is vital to choose a reasonable heating power in the field exploitation. Under the NGH reservoir and production parameters set in this paper, the most optimal electrical heating power should be 500 W/m with comprehensive consideration of gas production rate, NGH front promoting velocity and energy efficiency.
机译:对于天然气水合物(NGH)开采,原位电加热已被证明是实验室实验规模中的有希望的生产方法。但是由于反应器的大小的限制,这种规模的结果难以可靠地反映现场试验。因此,通过坚韧的水合物软件,本文通过原位电加热刺激现场规模的水合物开采。此外,将减压施加为比较。基于对储层温度和水合物分布等几个参数的分析,结果表明,尽管更大的加热功率可能导致分解前方的移动更快,但快速的气体生产需要大量的储存器。而且,电加热效果受到现场尺度中形成的导热率的限制,因此加热方法的热促进距离在五年后,即使具有1000W / m的电加热功率,也可以在五年后的10米。大量的热量损失和加热注射的短缺使得它的能量效率显着降低了生产时间。因此,大型加热功率不能总是保持快速的气体和水产量。此外,更高的加热功率并不意味着更好的剥削效果。因此,在现场剥削中选择合理的加热功率至关重要。在本文中的NGH储层和生产参数下,最佳的电加热功率应为500 W / m,全面考虑气体生产率,NGH前促进速度和能效。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号