首页> 外文期刊>Earth s Future >The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know
【24h】

The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know

机译:在植物灌木丛中造型的最新技术:我们知道什么,我们需要知道什么?

获取原文
           

摘要

Models are key tools in our quest to better understand the impacts of soil waterlogging on plant growth and crop production. Here, we reviewed the state of the art of modeling approaches and compared the conceptual design of these models with recent experimental findings. We show that many models adopt an aeration stress (AS) principle where surplus water reduces air‐filled porosity, with implications for root growth. However, subsequent effects of AS within each model vary considerably. In some cases, AS inhibits biomass accumulation (e.g. AquaCrop), altering processes prior to biomass accumulation such as light interception (e.g. APSIM), or photosynthesis and carbohydrate accumulation (e.g. SWAGMAN Destiny). While many models account for stage‐dependent waterlogging effects, few models account for experimentally observed delays in phenology caused by waterlogging. A model intercomparison specifically designed for long‐term waterlogged conditions (APSIM‐Oryza) with models developed for dryland conditions with transient waterlogging would advance our understanding of the current fitness for purpose of exsiting frameworks for simulating transient waterlogging in dryland cropping systems. Of the point‐based dynamic models examined here, APSIM‐Soybean and APSIM‐Oryza simulations most closely matched with the observed data, while GLAM‐WOFOST achieved the highest performance of the spatial‐regional models examined. We conclude that future models should incorporate waterlogging effects on genetic tolerance parameters such as (1) phenology of stress onset, (2) aerenchyma, (3) root hydraulic conductance, (4) nutrient‐use efficiency, and (5) plant ion (e.g. Fe/Mn) tolerance. Incorporating these traits/effects into models, together with a more systematic model intercomparison using consistent initialization data, will significantly improve our understanding of the relative importance of such factors in a systems context, including feedbacks between biological factors, emergent properties, and sensitive variables responsible for yield losses under waterlogging.
机译:模型是我们寻求更好地了解土壤涝渍对植物生长和作物生产的影响的关键工具。在这里,我们审查了建模方法的技术,并将这些模型的概念设计与最近的实验结果进行了比较。我们表明,许多型号采用曝气压力(AS)原则,其中剩余水降低充气孔隙率,具有根本生长的影响。然而,随后在每个模型内的后续效果大幅不同。在某些情况下,如抑制生物质积累(例如Aquacrop),在生物质积累之前改变过程,例如光截止(例如APSIM)或光合作用和碳水化合物积累(例如Swagman命运)。虽然许多型号占阶段依赖的水涝效果,但很少有模型用于通过水涝引起的实验观察到的候选延迟的型号。专门为长期涝渍条件(APSIM-ORYZA)专门设计的型号,具有用于旱地条件的模型,具有瞬态水涝的型号将推进我们对当前适应性的理解,用于在Dryland种植系统中模拟瞬态水涝的框架。在这里检查的基于点的动态模型,APSIM-eyoybean和APSIM-ORYZA模拟与观察到的数据最紧密匹配,而Glam-Wofost则达到所检查的空间区域模型的最高性能。我们得出结论,未来的模型应纳入遗传耐受参数的涝脂作用,如(1)应激发作的候选,(2)避风血,(3)根液压传导,(4)营养 - 使用效率,(5)植物离子(例如Fe / Mn)耐受性。将这些特征/效果与使用一致初始化数据的更系统的模型相互作用,将显着提高我们对系统上下文中这些因素的相对重要性的理解,包括生物因素,突出特性和敏感变量之间的反馈用于在涝渍下的产量损失。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号