首页> 外文期刊>Earth and Space Science >Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
【24h】

Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies

机译:预测火星模拟沉积岩性的机械和断裂性能

获取原文
       

摘要

Rock fractures and veins have been well documented by the Curiosity rover in the lithologies within Gale crater, Mars, and an understanding of the rock mechanical properties of Mars analog samples will improve our capabilities to predict fracture formation conditions (e.g., burial depth and influence of fluids). Data collected by Curiosity's drill allow estimation of unconfined compressive strength (UCS) for rocks that have been sampled by the drill. These estimates reveal that the drilled rock types are considerably weak. Qualitative assessments of rock types that were not drilled, however, suggest that stronger lithologies also exist within Gale crater. Here we integrate experimental testing, computational simulation, and uncertainty quantification to evaluate a predictive approach using the UCS obtained from the rover to determine a suite of mechanical properties for Gale lithologies. This method is demonstrated using analog rocks, specifically iron‐cemented sandstone and poorly lithified mudstone. The range of properties determined from sandstone testing is consistent with very strong terrestrial lithologies, and mudstone testing is consistent with extremely weak lithologies, both representative of rock types identified in Gale crater. We evaluate the use of established correlations between measured properties and quantify the uncertainty in using predicted properties to simulate fracture through analog lithologies. Sensitivity analysis indicates the properties of tensile strength and fracture energy derived from the UCS are highly influential properties in predicting fracture. The predictive approach was successful for a well‐sorted and well‐cemented fine sandstone with no visible porosity and exhibited substantially large errors for analog eolian siltstone lithologies. Plain Language Summary Fractures have been well documented by the Curiosity rover in rock units exposed within Gale crater, Mars, and an understanding of the mechanical properties of these rocks is necessary to predict the conditions of fracture formation. On Mars, however, our understanding of rock properties is restricted by a paucity of information on rock composition, limited access to samples for contact science, and a lack of quantitative mechanical data. It is therefore essential to develop the technology to predict a full suite of mechanical properties from available Mars rover data. To advance the potential of such technology on future rovers, we investigate the properties of Mars analog rock types, predict a full range of properties from rock strength, and quantify the uncertainty in this predictive method in order to identify the key factors that influence fracture formation.
机译:岩石骨折和静脉通过大风陨石坑,火星内的岩石中的好奇心搬家造成了很好的记录,以及对火星模拟样品的岩石力学性能的理解将改善预测骨折形成条件的能力(例如,埋葬深度和影响液体)。由好奇钻头收集的数据允许估计由钻头采样的岩石的无束缚的压缩强度(UCS)。这些估计表明,钻孔的岩石类型很弱。然而,未经钻孔的岩石类型的定性评估表明,大孔陨石坑内也存在更强的岩性。在这里,我们整合了实验测试,计算模拟和不确定量化,以评估使用从流动站获得的UC来评估预测方法,以确定大岩岩的机械性能套件。使用模拟岩石,具体进行铁水砂岩和泥岩差的泥岩,证明了该方法。从砂岩测试确定的性质范围与非常强大的地面岩性相一致,泥岩测试与极其弱薄薄的岩性一致,两种岩石都是岩石陨石坑中鉴定的岩石类型的代表。我们评估使用测量性质之间建立的相关性并量化使用预测性质来模拟模拟岩性的裂缝的不确定性。敏感性分析表明,衍生自UCS的拉伸强度和断裂能的性质是预测骨折的高度影响力。预测方法是成功的,对于一种良好的良好和巩固的细砂岩,没有可见孔隙度,并且对于模拟Eolian硅铁石岩性表现出大量大的误差。普通语言摘要骨折已经通过大风陨石坑内暴露的岩石单元中的好奇心罗文队进行了充分的记录,并理解这些岩石的机械性能,以预测骨折形成的条件。然而,在火星上,我们对岩石性质的理解受岩石组成的缺乏限制,限制了对联系科学的样品的获取,以及缺乏定量的机械数据。因此,必须开发技术,以预测可用MARS Rover数据的全套机械性能。为了推进这种技术对未来的流浪者的潜力,研究火星模拟岩石类型的性质,预测来自岩石强度的全部特性,并在这种预测方法中量化了不确定性,以确定影响骨折形成的关键因素。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号