...
首页> 外文期刊>International Journal of Electrochemical Science >Nanostructured three-dimensional Reduced Graphene Oxide- Mn3O4?Architectures with High Conductivity and Bacteria Affinity for Highly Efficient Microbial Electrocatalysis
【24h】

Nanostructured three-dimensional Reduced Graphene Oxide- Mn3O4?Architectures with High Conductivity and Bacteria Affinity for Highly Efficient Microbial Electrocatalysis

机译:纳米结构的三维氧化石墨烯氧化物 - MN3O4?具有高导电性和细菌亲和力的架构,对高效微生物电性分析

获取原文

摘要

Bioelectrochemical system (BES) exhibits great potential for the wastewater treatment, which canachieve the energy storage simultaneously. However, the application of BES is limited due to the interiorstructure and composition of electrode materials. Here, a hybrid nano-structure reduced graphene oxideMn3O4 (rGO@Mn3O4) electrode was obtained through one-step electrodeposition method, and utilizedto enhance the performance of Geobacter sulfurreducens inoculated BES. The hierarchicalrGO@Mn3O4 is equipped with open porous and higher surface roughness, which are favorable for themicrobial colonization. And the electron transport from exoelectrogens to the electrode facilitated by thethree-dimensional interconnecting conductive scaffold. Further, the rGO@Mn3O4 electrode realized themaximum current density in a three-electrode setup reached 0.0376 mA cm?2 with high loading, whichis 3.03-fold higher than that of a bare rGO (0.0124 mA cm?2). The great performance is attributed to theproper pore size distribution and the “rose”-like porous structure Mn3O4 particles coating on the surfaceof the rGO sheets network. This work reveals a synergistic effect in pore structure and surface chemistrydesign to promote bioelectrocatalysis in BESs..
机译:生物电化学系统(BES)表现出的废水处理,这同时canachieve能量存储很大的潜力。然而,BES的应用由于电极材料的interiorstructure和组合物的限制。这里,混合纳米结构还原的石墨烯oxideMn3O4通过一步法电沉积法得到的(RGO @的Mn3O4)电极,和utilizedto增强地杆菌的性能硫还原接种BES。所述hierarchicalrGO @ Mn3O4的配备有开孔和较高的表面粗糙度,这对于themicrobial定植有利。和从exoelectrogens到电极的电子传输容易通过和谐社会的三个维互连导电支架。此外,RGO @ Mn3O4的电极实现了三电极设置themaximum电流密度达到0.0376毫安厘米?2具有高负载,whichis 3.03倍比裸RGO的更高(0.0124毫安厘米?2)。大性能归因于theproper孔径分布和“玫瑰”状多孔结构的Mn3O4颗粒涂覆surfaceof的RGO片网络上。这项工作揭示了孔结构和表面chemistrydesign的协同效应在贝丝促进生物电催化..

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号