首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model
【24h】

Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

机译:在高海拔SSMIS频道中建模Zeeman效应,用于数值天气预报型材:比较快速模型和逐行模型

获取原文
           

摘要

We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high-altitude Special Sensor Microwave Imager/Sounder channels?1922. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9?and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel?22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Concerning the same channel, there is 1.2 K on average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel?21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Regarding the same channel, there is 1.3 K on average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels?19 and?20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies, causing up to ±7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels?19 and?20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.
机译:我们向受影响的高空特殊传感器微波成像仪/发声频道的数值天气预报型材提供了参考和快速辐射转移模型的比较?1922。我们发现模型与通道21和22相比很好地与频道的系统噪声温度(分别为1.9?和1.3 k)和受影响的海拔高度的预期轮廓误差(估计为约5 k)。对于通道?22模型之间存在0.5克平均差异,标准偏差为0.24k,用于全套大气剖面。关于相同的通道,快速模型和传感器测量之间平均平均有1.2 k,具有1.4 k标准偏差。对于通道?21模型之间有0.9 k平均差异,标准偏差为0.56 k。关于相同的通道,在快速模型和传感器测量之间平均有1.3 k,具有2.4 k标准偏差。我们考虑相对较小的模型差异作为这些通道的快速塞曼效应方案的验证。两个通道均在两个模型使用二维磁场分布时具有较小的模型(低于0.2 k)和更小的标准偏差(低于0.4k)之间的平均差异。然而,当参考模型切换到使用完整的三维磁场分布时,由于观察几何依赖性,对快速模型的标准偏差增加到几乎2 k,导致赤道附近的±7k差异。尽管改变磁场配置,但两种模型之间的平均差异仍然很小。由于数值天气预报型材的有限范围,我们无法比较通道?19和?20到传感器测量。我们建议使用快速模型的数值天气预报软件考虑受影响的传感器通道的数据同化,以更好地限制上大气温度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号