首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Formaldehyde production from isoprene oxidation across?NOx?regimes
【24h】

Formaldehyde production from isoprene oxidation across?NOx?regimes

机译:从异戊二烯氧化的甲醛产生?NOx?制度

获取原文
           

摘要

The chemical link between isoprene and formaldehyde (HCHO) is a strong, nonlinear function of NOx (i.e., NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban–rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.12 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100 % increase in OH and a 40 % increase in branching of organic peroxy radical reactions to produce HCHO.
机译:异戊二烯和甲醛(HCHO)之间的化学环是NOx(即,NO + NO2)的强,非线性函数。这种关系是来自轨道HCho柱观察的自上而下的异戊二烯排放库存验证的Linchpin。它还是关于VOC氧化的整体光化学机制性能的基准。在美国东南地区使用全面的空中套件,我们量化了城乡频谱的HCHO生产。异戊二烯分析及其主要的第一代氧化产品允许我们定义Hcho的“提示”产率(每分子产生的新发射异戊二烯的Hcho分子)和背景Hcho混合比(从较长寿命的碳氢化合物的氧化) 。在观察到的NOx值(大约0.12ppbv)的范围内,提示产量增加了3倍(从0.3到0.9ppbv ppbv1),而背景Hcho增加了2倍(从1.6到3.3 ppbv)增加。我们应用相同的方法来评估全球化学传输模型(AM3)的性能和测量约束的0-D稳态盒模型。两种模型再现促进HCHO产量的NOx依赖性,说明具有更新的异戊二烯氧化机制的模型可以充分捕获HCHO和最近异戊二烯排放之间的联系。另一方面,两种模型都低估了背景HCHO混合比,表明缺少HCHO前体,不足的后代异戊二烯降解和/或低估的羟基自由基浓度。来自盒式模拟的详细过程率在观察到的NOx值范围内显示出3倍的HCHO生产增加,其oh oh的100%增加和有机过氧自由基反应的分支增加40%以产生Hcho。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号