首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model
【24h】

Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model

机译:使用化学传输模型对北美测​​量的气溶胶质量散射效率的解释

获取原文
       

摘要

Aerosol mass scattering efficiency affects climate forcing calculations, atmospheric visibility, and the interpretation of satellite observations of aerosol optical depth. We evaluated the representation of aerosol mass scattering efficiency (αsp) in the GEOS-Chem chemical transport model over North America using collocated measurements of aerosol scatter and mass from IMPROVE network sites between 2000 and 2010. We found a positive bias in mass scattering efficiency given current assumptions of aerosol size distributions and particle hygroscopicity in the model. We found that overestimation of mass scattering efficiency was most significant in dry (RH35%) and midrange humidity (35%RH65%) conditions, with biases of 82% and 40%, respectively. To address these biases, we investigated assumptions surrounding the two largest contributors to fine aerosol mass, organic (OA) and secondary inorganic aerosols (SIA). Inhibiting hygroscopic growth of SIA below 35% RH and decreasing the dry geometric mean radius, from 0.069μm for SIA and 0.073μm for OA to 0.058μm for both aerosol types, significantly decreased the overall bias observed at IMPROVE sites in dry conditions from 82% to 9%. Implementation of a widely used alternative representation of hygroscopic growth following κ-Kohler theory for secondary inorganic (hygroscopicity parameter κ=0.61) and organic (κ=0.10) aerosols eliminated the remaining overall bias in αsp. Incorporating these changes in aerosol size and hygroscopicity into the GEOS-Chem model resulted in an increase of 16% in simulated annual average αsp over North America, with larger increases of 25% to 45% in northern regions with high RH and hygroscopic aerosol fractions, and decreases in αsp up to 15% in the southwestern U.S. where RH is low.
机译:气溶胶质量散射效率影响气候迫使计算,大气的可见性和气溶胶光学深度卫星观测的解释。我们使用2000年至2010年间改进网络站点的气溶胶散射和质量分散测量来评估Geos-Chem化学传输模型中的气溶胶质量散射效率(αSP)的代表。我们发现了批量散射效率的正偏差气溶胶尺寸分布及模型中颗粒吸湿性的目前的假设。我们发现,质量散射效率的高估在干燥(RH35%)和中端湿度(35%RH65%)条件下最显着,分别为82%和40%。为了解决这些偏见,我们调查了周围两大贡献者对细气溶胶质量,有机(OA)和二次无机气溶胶(SIA)的假设。抑制SIA的吸湿性生长低于35%RH并降低干燥的几何平均半径,对于SIA的0.069μm和0.073μm,对于气溶胶类型的OA至0.058μm,显着降低了在52%的干燥条件下改善位点的整体偏差达到9%。 κ-Kohler理论对二级无机(吸湿性参数κ= 0.61)和有机(κ= 0.10)气溶胶的广泛使用替代表示的替代表示的替代表示,消除了αsp中的剩余总体偏差。将这些变化的气溶胶尺寸和吸湿性进入Geos-Chem模型,导致模拟年平均αsp在北美的增加16%,北部地区的增加25%至45%,具有高Rh和吸湿气溶胶馏分,在RH低位的美国西南部αsp中αsp可达15%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号