首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6
【24h】

Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

机译:南半球CO,C2H6和HCN的趋势和变化指向CO和C2H6的衰退的人为排放

获取原文
           

摘要

We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (?0.94 ± 0.47% yr?1), C2H6 (?2.37 ± 1.18% yr?1) and HCN (?0.93 ± 0.47% yr?1) at Lauder and CO (?0.92 ± 0.46% yr?1), C2H6 (?2.82 ± 1.37% yr?1) and HCN (?1.41 ± 0.71% yr?1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997–1998 El Ni?o Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997–2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily captures both the seasonality and trends in HCN, it is not able to reproduce the negative trends in either C2H6 or CO. A further simulation assuming a 35% decline of C2H6 and a 26% decline of CO emissions from the industrial sources from 1997 to 2009 largely captures the observed trends of C2H6 and CO partial columns at both locations. Here we attribute trends in HCN exclusively to changes in biomass burning and thereby isolate the influence of anthropogenic emissions as responsible for the long-term decline in CO and C2H6. This analysis shows that biomass burning emissions are the main factors in controlling the interannual and seasonal variations of these species. We also demonstrate contributions of biomass burning emission from different southern tropical and sub-tropical regions to seasonal and interannual variations of CO at Lauder; it shows that long-range transport of biomass burning emissions from southern Africa and South America have consistently larger year-to-year contributions to the background seasonality of CO at Lauder than those from other regions (e.g. Australia and South-East Asia). However, large interannual anomalies are triggered by variations in biomass burning emissions associated with large-scale El Ni?o Southern Oscillation and prolonged biomass burning events, e.g. the Australian bush fires.
机译:我们将一氧化碳(CO),乙烷(C2H6)和氰化氢(HCN)部分柱(从地下到12km)分析,所述劳德,新西兰劳德(45°S)在基于地面的太阳傅里叶变换光谱法中衍生自测定。(45°S, 170°E),抵达高度,南极(78°S,167°E),1997年至2009年。根据每日平均观察时间序列,即同期的两个地点的所有物种计算显着的负趋势。 (?0.94±0.47%YR?1),C2H6(?2.37±1.18%YRα1)和劳拉和CO(?0.92±0.46%YR?1),C2H6 (?2.82±1.37%YR?1)和到达高度时HCN(?1.41±0.71%YR?1)。不确定性反映了95%的置信限制。然而,趋势的大幅度受到与1997-1998 EL NI?O Southern振荡事件相关的异常的影响。我们从1997年到2009年计算每个月的趋势,并为所有月找到负面趋势。在南半球热带和亚热带生物量燃烧期间,南半球春季期间,在劳拉的CO和C2H6和较小程度上的最大每月趋势,以及到达高度的程度。对于HCN来说,最大的月度趋势在7月和8月在劳德达和11月左右的抵达高地发生。 CO和C2H6之间的相关性和CO与HCN在劳德在劳德的相关性,当时生物质燃烧最大化时,在其他季节的那些中显着更大。对流层化学 - 气候模型用于模拟1997 - 2009年期间的CO,C2H6和HCN部分柱,使用GFED3的依然变化的生物质燃烧排放和每年周期性但季节性不同的发射来自生物和人为来源。这些物种的模型模拟部分列与测量的部分柱相比,模型在两个位置准确地再现了所有三种种类的季节性周期。然而,虽然该模型令人满意地捕获HCN的季节性和趋势,但它无法再现C2H6或CO的负趋势。假设C2H6下降35%的进一步模拟和来自CO排放的26% 1997年至2009年的工业来源主要捕获两个地点的观察到的C2H6和CO部分柱的趋势。在这里,我们将HCN的趋势属于生物量燃烧的变化,从而将人为排放的影响与CO和C2H6的长期下降负责。该分析表明,生物质燃烧排放是控制这些物种的持续和季节变化的主要因素。我们还展示了生物量燃烧从不同南部热带和次热带地区的燃烧发射到劳拉的季节性和际变化的贡献;结果表明,南非和南美洲的生物量燃烧的生物量燃烧排放的远程运输始终如一,对劳德的背景季节性的贡献始终如一,而不是来自其他地区的国家(例如澳大利亚和东南亚)。然而,通过与大型El Ni的生物量燃烧排放的变化来引发大的际际异构体触发,例如南方振荡和延长生物量燃烧事件,例如,燃烧的事件。澳大利亚丛林火灾。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号