首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic
【24h】

Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic

机译:采用空中辐射和云微孔物理学观察,以改善北极公正分辨率的云表示

获取原文
           

摘要

Clouds play a potentially important role in Arctic climate change but are poorly represented in current atmospheric models across scales. To improve the representation of Arctic clouds in models, it is necessary to compare models to observations to consequently reduce this uncertainty. This study compares aircraft observations from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign around Svalbard, Norway, in May–June 2017 and simulations using the ICON (ICOsahedral Non-hydrostatic) model in its numerical weather prediction (NWP) setup at 1.2km horizontal resolution. By comparing measurements of solar and terrestrial irradiances during ACLOUD flights to the respective properties in ICON, we showed that the model systematically overestimates the transmissivity of the mostly liquid clouds during the campaign. This model bias is traced back to the way cloud condensation nuclei (CCN) get activated into cloud droplets in the two-moment bulk microphysical scheme used in this study. This process is parameterized as a function of grid-scale vertical velocity in the microphysical scheme used, but in-cloud turbulence cannot be sufficiently resolved at 1.2km horizontal resolution in Arctic clouds. By parameterizing subgrid-scale vertical motion as a function of turbulent kinetic energy, we are able to achieve a more realistic CCN activation into cloud droplets. Additionally, we showed that by scaling the presently used CCN activation profile, the hydrometeor number concentration could be modified to be in better agreement with ACLOUD observations in our revised CCN activation parameterization. This consequently results in an improved representation of cloud optical properties in our ICON simulations.
机译:云在北极气候变化中发挥了潜在的重要作用,但在尺度上的当前大气模型中似乎不佳。为了改善模型中北极云的代表,有必要将模型与观察结果进行比较,从而减少这种不确定性。本研究比较了在挪威斯瓦尔巴德周围的斯瓦尔巴德(Acloud)在2017年5月至6月,在2017年5月至2017年5月的斯瓦尔巴德(Acloud)运动中使用空气测量的飞机观察,并在其数值天气预报(NWP)中使用图标(ICOSAHEDRAL非静水压)模型的模拟设置为1.2km水平分辨率。通过比较ACLoud飞行期间太阳能和地面辐射的测量,在图标中的相应属性中,我们表明该模型系统地高估了广告系列期间主要液体云的透射率。该型号偏置追溯到云冷凝核(CCN)在本研究中使用的两时间批量微观物理方案中被激活到云液滴中。该过程作为使用的微微物理方案中的网格级垂直速度的函数参数化,但在北极云中的1.2km水平分辨率下不能充分地解析云湍流。通过参数化子级垂直运动作为湍流动能的函数,我们能够在云液滴实现更现实的CCN激活。此外,我们表明,通过缩放目前使用的CCN激活曲线,可以修改水流计量浓度,以便在我们修订的CCN激活参数化中更好地与ACLoud观测结果更好。因此,这导致图标模拟中的云光学特性的改进表示。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号