首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations
【24h】

Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations

机译:气溶胶检索对地面太阳/天空辐射计观测的几何配置的敏感性

获取原文
           

摘要

A sensitivity study of aerosol retrievals to the geometrical configuration of the ground-based sky radiometer observations is carried out through inversion tests. Specifically, this study is focused on principal plane and almucantar observations, since these geometries are employed in AERONET (AErosol RObotic NETwork). The following effects have been analyzed with simulated data for both geometries: sensitivity of the retrieval to variability of the observed scattering angle range, uncertainties in the assumptions of the aerosol vertical distribution, surface reflectance, possible instrument pointing errors, and the effects of the finite field of view. The synthetic observations of radiometer in the tests were calculated using a previous climatology data set of retrieved aerosol properties over three AERONET sites: Mongu (Zambia) for biomass burning aerosol, Goddard Space Flight Center (GSFC; Maryland, USA) for urban aerosol and Solar Village (Saudi Arabia) for desert dust aerosol. The results show that almucantar retrievals, in general, are more reliable than principal plane retrievals in presence of the analyzed error sources. This fact partially can be explained by practical advantages of the almucantar geometry: the symmetry between its left and right branches that helps to eliminate some observational uncertainties and the constant value of optical mass during the measurements, that make almucantar observations nearly independent of the vertical variability of aerosol. Nevertheless, almucantar retrievals present instabilities at high sun elevations due to the reduction of the scattering angle range coverage, resulting in decrease of information content. It is in such conditions that principal plane retrievals show a better stability, as shown by the simulation analysis of the three different aerosol models. The last part of the study is devoted to the identification of possible differences between the aerosol retrieval results obtained from real AERONET data using both geometries. In particular, we have compared AERONET retrievals at the same sites used in the simulation analysis: Mongu (biomass burning), GSFC (urban) and Solar Village (desert dust). Overall, this analysis shows robust consistency between the retrievals from simultaneous observations in principle plane and almucantar All identified differences are within the uncertainties estimated for the AERONET operational aerosol retrieval. The differences in the size distribution are generally under 10% for radii between 0.1 μm and 5 μm, and outside this size range, the differences can be as large as 50%. For the absorption parameters, i.e., single scattering albedo and the imaginary part of the refractive index, the differences are typically under 0.01 and 0.003, respectively. The real part of the refractive index showed a difference of 0.01 for biomass burning and urban aerosol, and a difference of around 0.03 for desert dust. Finally, it should be noted that the whole data set includes only 200 pairs, which have been taken under very stable atmospheric conditions; therefore, in a general case, differences between principal plane (PPL) and almucantar (ALM) are expected to be higher. Though the observed differences between ALM and PPL are rather small, it should be noted that this analysis has been conducted using a limited set of 200 observation pairs selected under stable atmospheric conditions.
机译:通过反转试验进行气溶胶检索气溶胶检索到地面天空辐射计观察的几何配置。具体地,该研究专注于主平面和Almucantar观察,因为这些几何在AeroNet(气溶胶机器人网络)中使用。通过用于几何形状的模拟数据分析以下效果:检索到观察到的散射角度范围的可变性的灵敏度,气溶胶垂直分布的假设中的不确定性,表面反射率,可能的仪器指向误差以及有限的效果视野。在测试中的辐射计中的辐射计的合成观察使用三个机动机场的检索到的气雾质特性(SmoMass Bursolool(Goddard Speed Centre(GSFC; Maryland,USA)的生物量燃烧器,蒙古(赞比亚)进行计算,用于城市气溶胶和太阳能村庄(沙特阿拉伯)用于沙漠尘埃气溶胶。结果表明,在存在分析的误差源的情况下,Almucantar检索通常比主平面检索更可靠。该事实可以通过Almucantar几何形状的实际优点来解释:其左右分支之间的对称性,有助于消除测量期间的一些观察不确定性和光学质量的恒定值,使得Almucantar观察几乎独立于垂直变异性气溶胶。然而,由于散射角度范围覆盖率的降低,Almucantar检索在高阳光升高时呈现不稳定性,导致信息内容的降低。它在这种条件下,主要平面检索显示出更好的稳定性,如三种不同的气溶胶模型的模拟分析所示。该研究的最后一部分致力于使用两个几何形状从真正的AeroNet数据获得的气溶胶检索结果之间的可能差异。特别是,我们在模拟分析中使用的同一部位进行了比较了AeroNet检索:Mongu(BioMass Burning),GSFC(城市)和太阳能村(沙漠粉尘)。总体而言,该分析在原则上的同时观察中检索之间的稳健一致性,并且Almucantar所有鉴定的差异都在估计的航空仪操作气溶胶检索的不确定性范围内。尺寸分布的差异通常为0.1μm和5μm之间的半径的10%,并且在这个尺寸范围之外,差异可以大约50%。对于吸收参数,即单次散射反玻璃和折射率的虚部,差异通常分别为0.01和0.003。折射率的实际部分显示生物质燃烧和城市气溶胶的差异为0.01,以及沙漠粉尘的差异约为0.03。最后,应该注意的是,整个数据集仅包括200对,在非常稳定的大气条件下被采用;因此,在一般情况下,预期主平面(PPL)和Almucantar(ALM)之间的差异将更高。尽管ALM和PPL之间观察到的差异相当小,但是应该注意,在稳定的大气条件下选择的有限200观察对对进行了该分析。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号