首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees
【24h】

Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees

机译:使用梯度提升回归树改善大气化学传输模型的预测

获取原文
           

摘要

Predictions from process-based models of environmental systems are biased, due to uncertainties in their inputs and parameterizations, reducing their utility. We develop a predictor for the bias in tropospheric ozone (O3, a key pollutant) calculated by an atmospheric chemistry transport model (GEOS-Chem), based on outputs from the model and observations of ozone from both the surface (EPA, EMEP, and GAW) and the ozone-sonde networks. We train a gradient-boosted decision tree algorithm (XGBoost) to predict model bias (model divided by observation), with model and observational data for 2010–2015, and then we test the approach using the years 2016–2017. We show that the bias-corrected model performs considerably better than the uncorrected model. The root-mean-square error is reduced from 16.2 to 7.5ppb, the normalized mean bias is reduced from 0.28 to ?0.04, and Pearson's R is increased from 0.48 to 0.84. Comparisons with observations from the NASA ATom flights (which were not included in the training) also show improvements but to a smaller extent, reducing the root-mean-square error (RMSE) from 12.1 to 10.5ppb, reducing the normalized mean bias (NMB) from 0.08 to 0.06, and increasing Pearson's R from 0.76 to 0.79. We attribute the smaller improvements to the lack of routine observational constraints for much of the remote troposphere. We show that the method is robust to variations in the volume of training data, with approximately a year of data needed to produce useful performance. Data denial experiments (removing observational sites from the algorithm training) show that information from one location (for example Europe) can reduce the model bias over other locations (for example North America) which might provide insights into the processes controlling the model bias. We explore the choice of predictor (bias prediction versus direct prediction) and conclude both may have utility. We conclude that combining machine learning approaches with process-based models may provide a useful tool for improving these models.
机译:由于其输入和参数化的不确定性,基于过程的环境系统模型的预测偏置,减少了其实用程序。我们在由大气化学输送模型(Geos-Chem)计算的对流层臭氧(O3,一个关键污染物)中的偏置的预测因子,基于来自表面(EPA,EMEP的臭氧的模型和观察结果的输出gaw)和臭氧-sonde网络。我们训练梯度提升决策树算法(XGBoost)以预测模型偏置(模型除以观察),2010-2015的模型和观察数据,然后我们使用2016-2017年来测试方法。我们表明偏置模型比未校正模型更好地执行。根均方误差从16.2到7.5pp减少,归一化平均偏置从0.28减少到?0.04,Pearson的R从0.48增加到0.84。与美国宇航局原子航班的观察结果(培训中未包含)的比较也表现出改进,但在较小的程度上,将根均方误差(RMSE)从12.1到10.5ppb减少,从而减少了归一化平均偏差(NMB )0.08至0.06,并将Pearson的R从0.76增加到0.79。我们归因于缺乏常规对流层的常规观测限制的较小改进。我们表明该方法对培训数据量的变化具有稳健性,具有产生有用性能所需的大约一年的数据。数据拒绝实验(从算法训练中删除观察站点)显示来自一个位置(例如欧洲)的信息可以减少在其他位置(例如北美)的模型偏置,这可能会对控制模型偏置的过程提供见解。我们探讨了预测器的选择(偏差预测与直接预测),并且结束都可能有用。我们得出结论,将基于过程的模型的机器学习方法组合可以提供用于改进这些模型的有用工具。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号