首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol
【24h】

Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol

机译:气于粒子分配方法对生物二次有机气溶胶模拟辐射效应的影响

获取原文
           

摘要

The oxidation of biogenic volatile organic compounds (BVOCs) gives a range of products, from semi-volatile to extremely low-volatility compounds. To treat the interaction of these secondary organic vapours with the particle phase, global aerosol microphysics models generally use either a thermodynamic partitioning approach (assuming instant equilibrium between semi-volatile oxidation products and the particle phase) or a kinetic approach (accounting for the size dependence of condensation). We show that model treatment of the partitioning of biogenic organic vapours into the particle phase, and consequent distribution of material across the size distribution, controls the magnitude of the first aerosol indirect effect (AIE) due to biogenic secondary organic aerosol (SOA). With a kinetic partitioning approach, SOA is distributed according to the existing condensation sink, enhancing the growth of the smallest particles, i.e. those in the nucleation mode. This process tends to increase cloud droplet number concentrations in the presence of biogenic SOA. By contrast, an approach that distributes SOA according to pre-existing organic mass restricts the growth of the smallest particles, limiting the number that are able to form cloud droplets. With an organically mediated new particle formation mechanism, applying a mass-based rather than a kinetic approach to partitioning reduces our calculated global mean AIE due to biogenic SOA by 24 %. Our results suggest that the mechanisms driving organic partitioning need to be fully understood in order to accurately describe the climatic effects of SOA.
机译:生物挥发性有机化合物(BVOC)的氧化给予一系列产品,从半挥发到极低挥发性化合物。为了用颗粒相处理这些二次有机蒸汽的相互作用,全球气溶胶微型药物模型通常使用热力分配方法(假设半挥发性氧化产物和粒子相之间的瞬间平衡)或动力学方法(占尺寸依赖性凝结)。我们表明模型处理生物原性有机蒸汽分配到粒子相中,并随后横跨尺寸分布的材料分布,控制了由于生物学二次有机气溶胶(SOA)引起的第一气溶胶间接效应(AIE)的大小。通过动力学分配方法,SOA根据现有的冷凝水分布,增强最小颗粒的生长,即核切割模式。该过程倾向于在生物成像的存在下增加云液滴数浓度。相比之下,根据预先存在的有机物质分配SOA的方法限制了最小颗粒的生长,限制了能够形成云液滴的数量。通过有机介导的新颗粒形成机制,施加基于质量的粒子,而不是动力学方法来分配,从而通过生物素SOA减少了我们计算的全局平均AIE 24%。我们的研究结果表明,需要充分理解推动有机分配的机制,以便准确描述SOA的气候效应。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号