首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Acetone variability in the upper troposphere: analysis of CARIBIC observations and LMDz-INCA chemistry-climate model simulations
【24h】

Acetone variability in the upper troposphere: analysis of CARIBIC observations and LMDz-INCA chemistry-climate model simulations

机译:丙酮在对流层上层变异性:纤细的观测分析和LMDZ-INCA化学 - 气候模型模拟

获取原文
           

摘要

This paper investigates the acetone variability in the upper troposphere (UT) as sampled during the CARIBIC airborne experiment and simulated by the LMDz-INCA global chemistry climate model. The aim is to (1) describe spatial distribution and temporal variability of acetone; (2) propose benchmarks deduced from the observed data set; and (3) investigate the representativeness of the observational data set. According to the model results, South Asia (including part of the Indian Ocean, all of India, China, and the Indochinese peninsula) and Europe (including Mediterranean Sea) are net source regions of acetone, where nearly 25 % of North Hemispheric (NH) primary emissions and nearly 40 % of the NH chemical production of acetone take place. The impact of these net source regions on continental upper tropospheric acetone is studied by analysing CARIBIC observations of 2006 and 2007 when most flight routes stretched between Frankfurt (Germany) and Manila (Philippines), and by focussing over 3 sub-regions where acetone variability is strong: Europe-Mediterranean, Central South China and South China Sea. Important spatial variability was observed over different scales: (1) east-west positive gradient of annually averaged acetone vmr in UT over the Eurasian continent, namely a factor two increase from east to west; (2) ocean/continent contrast with 50 % enhancement over the continents; (3) the acetone volume mixing ration (vmr) may vary in summer by more than 1000 pptv within only 5 latitude-longitude degrees; (4) the standard deviation for measurements acquired during a short flight sequence over a sub-region may reach 40 %. Temporal variability is also important: (1) the acetone volume mixing ratio (vmr) in the UT varies with the season, increasing from winter to summer by a factor 2 to 4; (2) a difference as large as 200 pptv may be observed between successive inbound and outbound flights over the same sub-region due to different flight specifications (trajectory in relation to the plume, time of day). A satisfactory agreement for the abundance of acetone is found between model results and observations, with e.g. only 30 % overestimation of the annual average over Central-South China and the South China Sea (between 450 and 600 pptv), and an underestimation by less than 20 % over Europe-Mediterranean (around 800 pptv). Consequently, annual budget terms could be computed with LMDz-INCA, yielding a global atmospheric burden of 7.2 Tg acetone, a 127 Tg yr?1 global source/sink strength, and a 21-day mean residence time. Moreover the study shows that LMDz-INCA can reproduce the impact of summer convection over China when boundary layer compounds are lifted to cruise altitude of 10–11 km and higher. The consequent enhancement of acetone vmr during summer is reproduced by LMDz-INCA, to reach agreement on an observed maximum of 970 ± 400 pptv (average during each flight sequence over the defined zone ± standard deviation). The summer enhancement of acetone is characterized by a high spatial and temporal heterogeneity, showing the necessity to increase the airborne measurement frequency over Central-South China and the South China Sea in August and September, when the annual maximum is expected (daily average model values reaching potentially 3000 pptv). In contrast, the annual cycle in the UT over Europe-Mediterranean is not reproduced by LMDz-INCA, in particular the observed summer enhancement of acetone to 1400 ± 400 pptv after long-range transport of free tropospheric air masses over North Atlantic Ocean is not reproduced. In view of the agreement on the acetone annual cycle at surface level, this disagreement in UT over Europe indicates misrepresentation of simulated transport of primary acetone or biased spatial distribution of acetone chemical sinks and secondary sources. The sink and source budget in long-range transported free tropospheric air masses may be studied by analysing atmospheric chemical composition observed by CARIBIC in summer flights between North America and Europe.
机译:本文研究了上层对流层(UT)的丙酮变异,如纤细的空中实验期间采样,并通过LMDZ-INCA全球化学气候模型模拟。目的是(1)描述丙酮的空间分布和时间变异性; (2)从观察到的数据集推荐的基准; (3)调查观察数据集的代表性。根据模型结果,南亚(包括印度洋的一部分,印度,中国和吲哚代理半岛)和欧洲(包括地中海)是丙酮的净源地区,其中近25%的北半球(NH )丙酮NH化学生产的初级排放和近40%。通过分析2006年和2007年的纤细的观察,在法兰克福(德国)和马尼拉(菲律宾)之间的大多数飞行路线,并聚焦了超过3个丙酮变异性的底座,研究了这些净源地区对大陆上对流层丙酮的影响。强大:欧洲 - 地中海,中南部和南海。在不同的尺度上观察到重要的空间变异性:(1)在欧亚大陆的每年平均丙酮VMR的东西阳性梯度,即从东部到西部的两倍增加。 (2)海洋/大陆对比大陆的50%增强; (3)丙酮体积混合配给(VMR)可在夏季变化超过1000 pptv,仅为5个纬度 - 经度程度; (4)在子区域的短途飞行序列中获得的测量标准偏差可能达到40%。时间变异性也很重要:(1)UT中的丙酮体积混合比(VMR)随季节而异,从冬季增加到夏季的倍数2至4; (2)由于不同的飞行规范(与羽流的轨迹,一天中的轨迹),在同一子区域的连续入境和出境飞行中,可以观察到200个PPTV的差异。在模型结果和观察中发现了对丰度丙酮的令人满意的协议,例如,在中国中南和南海(450至600 PPTV之间)只有30%的高度估量,低于欧洲 - 地中海(约800 pptv)低于20%的低估。因此,可以使用LMDZ-INCA计算年度预算术语,产生7.2 TG丙酮的全球大气负担,为127 TG YR?1个全球源/水槽强度,以及21天的平均停留时间。此外,研究表明,当边界层化合物抬起到巡航高度为10-11公里和更高时,LMDZ-INCA可以重现夏季对流对中国的影响。随后通过LMDZ-INCA再现夏季丙酮VMR的增强,以达到670±400 pptv的观察到的达成协议(在定义的区域±标准偏差上的每个飞行序列期间的平均值)。乙酮的夏季增强的特点是高空间和时间的异质性,表明在预期年度最大值的时间和9月份在8月和9月增加了中南中南和南海的空中测量频率的必要性(每日平均模式值达到潜在的3000 pptv)。相比之下,LMDZ-INCA欧洲的UT中的年度周期 - LMDZ-INCA没有复制,特别是观察到的夏季增强丙酮到1400±400 PPTV,在北大西洋的免费对流层气群之后。不是转载。鉴于对表面级的丙酮年度周期的协议,这种在UT欧洲的分歧表明,丙酮化学水槽和二级来源的模拟运输的模拟运输的虚假陈述。通过分析北美和欧洲之间的夏季航班观察到的纤细的大气化学成分,可以研究远程运输的自由色谱空气质量的水槽和源预算。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号