首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest
【24h】

Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest

机译:物理参数化和初始条件对美国中西部模拟大气运输和CO2摩尔分数的影响

获取原文
           

摘要

Atmospheric transport model errors are one of the main contributors to the uncertainty affecting CO2 inverse flux estimates. In this study, we determine the leading causes of transport errors over the US upper Midwest with a large set of simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The various WRF simulations are performed using different meteorological driver datasets and physical parameterizations including planetary boundary layer (PBL) schemes, land surface models (LSMs), cumulus parameterizations and microphysics parameterizations. All the different model configurations were coupled to CO2 fluxes and lateral boundary conditions from the CarbonTracker inversion system to simulate atmospheric CO2 mole fractions. PBL height, wind speed, wind direction, and atmospheric CO2 mole fractions are compared to observations during a month in the summer of 2008, and statistical analyses were performed to evaluate the impact of both physics parameterizations and meteorological datasets on these variables. All of the physical parameterizations and the meteorological initial and boundary conditions contribute 3 to 4ppm to the model-to-model variability in daytime PBL CO2 except for the microphysics parameterization which has a smaller contribution. PBL height varies across ensemble members by 300 to 400m, and this variability is controlled by the same physics parameterizations. Daily PBL CO2 mole fraction errors are correlated with errors in the PBL height. We show that specific model configurations systematically overestimate or underestimate the PBL height averaged across the region with biases closely correlated with the choice of LSM, PBL scheme, and cumulus parameterization (CP). Domain average PBL wind speed is overestimated in nearly every model configuration. Both planetary boundary layer height (PBLH) and PBL wind speed biases show coherent spatial variations across the Midwest, with PBLH overestimated averaged across configurations by 300–400m in the west, and PBL winds overestimated by about 1ms?1 on average in the east. We find model configurations with lower biases averaged across the domain, but no single configuration is optimal across the entire region and for all meteorological variables. We conclude that model ensembles that include multiple physics parameterizations and meteorological initial conditions are likely to be necessary to encompass the atmospheric conditions most important to the transport of CO2 in the PBL, but that construction of such an ensemble will be challenging due to ensemble biases that vary across the region.
机译:大气传输模型错误是影响CO2反向通量估计的不确定性的主要贡献者之一。在这项研究中,我们通过天气研究和预测(WRF)Mescle模型产生了大量模拟,确定了美国上部中西部的运输错误的主要原因。使用不同的气象驱动程序数据集和物理参数化来执行各种WRF模拟,包括行星边界层(PBL)方案,陆地面模型(LSM),Cumulus参数化和微物理学参数化。所有不同的模型配置与来自CarbonTracker反转系统的CO 2助熔剂和横向边界条件耦合,以模拟大气CO2摩尔级分。将PBL高度,风速,风向和大气二氧化碳摩尔分数与2008年夏天的一个月内进行比较,并且进行统计分析以评估物理参数化和气象数据集对这些变量的影响。除了具有较小贡献的微妙参数化之外,所有物理参数化和气象初始和边界条件都会在白天PBL CO2中贡献3至4ppm。 PBL高度跨集合构件的差异为300至400米,并且这种可变性由相同的物理参数化控制。每日PBL CO2摩尔分数误差与PBL高度中的误差相关。我们示出了系统地高估或低估了在整个区域上平均的PBL高度的特定模型配置,其中偏差与LSM,PBL方案和积云参数化(CP)密切相关联。域平均PBL风速在几乎每个模型配置中高估。行星边界层高度(PBLH)和PBL风速偏差都显示了中西部的连贯的空间变化,PBLH在西部横跨配置的平均估计平均,并且PBL风在东部平均约1ms?1。我们发现模型配置具有较低域的偏置域,但在整个区域中没有单一配置是最佳的,并且所有气象变量都是最佳的。我们得出结论,包括多种物理参数化和气象初始条件的模型集合可能是必要的,包括在PBL中对CO2的运输最重要的大气条件,但是这种集合的构建将挑战,因为合奏偏差是挑战各地区各不相同。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号