首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition
【24h】

Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition

机译:气体颗粒分配大气HG(II)及其对全球汞沉积的影响

获取原文
           

摘要

Atmospheric deposition of Hg(II) represents a major input of mercury to surface environments. The phase of Hg(II) (gas or particle) has important implications for deposition. We use long-term observations of reactive gaseous mercury (RGM, the gaseous component of Hg(II)), particle-bound mercury (PBM, the particulate component of Hg(II)), fine particulate matter (PM2.5), and temperature (T) at five sites in North America to derive an empirical gas-particle partitioning relationship log10(K1) = (10±1)–(2500±300)/T where K = (PBM/PM2.5)/RGM with PBM and RGM in common mixing ratio units, PM2.5 in μg m?3, and T in K. This relationship is within the range of previous work but is based on far more extensive data from multiple sites. We implement this empirical relationship in the GEOS-Chem global 3-D Hg model to partition Hg(II) between the gas and particle phases. The resulting gas-phase fraction of Hg(II) ranges from over 90 % in warm air with little aerosol to less than 10 % in cold air with high aerosol. Hg deposition to high latitudes increases because of more efficient scavenging of particulate Hg(II) by precipitating snow. Model comparison to Hg observations at the North American surface sites suggests that subsidence from the free troposphere (warm air, low aerosol) is a major factor driving the seasonality of RGM, while elevated PBM is mostly associated with high aerosol loads. Simulation of RGM and PBM at these sites is improved by including fast in-plume reduction of Hg(II) emitted from coal combustion and by assuming that anthropogenic particulate Hg(p) behaves as semi-volatile Hg(II) rather than as a refractory particulate component. We improve the simulation of Hg wet deposition fluxes in the US relative to a previous version of GEOS-Chem; this largely reflects independent improvement of the washout algorithm. The observed wintertime minimum in wet deposition fluxes is attributed to inefficient snow scavenging of gas-phase Hg(II).
机译:HG(II)的大气沉积代表了表面环境的主要输入。 HG(II)(气体或粒子)的相对于沉积具有重要意义。我们使用反应性气态汞的长期观察(RGM,HG(II)的气态​​成分),颗粒结合的汞(PBM,HG(II)的颗粒组分),细颗粒物质(PM2.5),和北美五个地点的温度(t)衍生经验性气体粒子分区关系LOG10(K1)=(10±1) - (2500±300)/ t,其中k =(PBM / PM2.5)/ RGM PBM和RGM以常见的混合比单位,PM2.5为μgm≤3,并且k中的t.这种关系在以前的工作范围内,但基于来自多个站点的远远广泛数据。我们在Geos-Chem Global 3-D HG模型中实施该实证关系,以分配气体和颗粒相之间的Hg(ii)。由此产生的气相分数的HG(II)的气相分数范围为90%,在具有高气溶胶的冷空气中的温暖空气中的暖空气超过90%。通过沉淀雪更有效地清除颗粒Hg(ii),Hg沉积增加。模型与北美地表网站的HG观测的比较表明,沉降从自由层(暖空气,低气溶胶)是推动RGM季节性的主要因素,而升高的PBM大多数与高气溶胶载荷相关。通过包括从煤燃烧发出的HG(II)的快速流量减少,并假设人为颗粒状Hg(P)表现为半挥发性Hg(II)而不是耐火材料而不是耐火材料而改善了这些部位的RGM和PBM的模拟颗粒组分。我们改善了美国HG湿沉积通量的模拟相对于先前版本的Geos-Chem;这在很大程度上反映了冲洗算法的独立改进。湿沉积助熔剂中观察到的冬季最小值归因于气相HG(II)的低次雪扫描。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号