首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties
【24h】

Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties

机译:宇宙射线,气溶胶形成和云凝结核:敏感性的模型不确定性

获取原文
           

摘要

The flux of cosmic rays to the atmosphere has been reported to correlate with cloud and aerosol properties. One proposed mechanism for these correlations is the "ion-aerosol clear-air" mechanism where the cosmic rays modulate atmospheric ion concentrations, ion-induced nucleation of aerosols and cloud condensation nuclei (CCN) concentrations. We use a global chemical transport model with online aerosol microphysics to explore the dependence of CCN concentrations on the cosmic-ray flux. Expanding upon previous work, we test the sensitivity of the cosmic-ray/CCN connection to several uncertain parameters in the model including primary emissions, Secondary Organic Aerosol (SOA) condensation and charge-enhanced condensational growth. The sensitivity of CCN to cosmic rays increases when simulations are run with decreased primary emissions, but show location-dependent behavior from increased amounts of secondary organic aerosol and charge-enhanced growth. For all test cases, the change in the concentration of particles larger than 80 nm between solar minimum (high cosmic ray flux) and solar maximum (low cosmic ray flux) simulations is less than 0.2 %. The change in the total number of particles larger than 10 nm was larger, but always less than 1 %. The simulated change in the column-integrated ?ngstr?m exponent was negligible for all test cases. Additionally, we test the predicted aerosol sensitivity to week-long Forbush decreases of cosmic rays and find that the maximum change in aerosol properties for these cases is similar to steady-state aerosol differences between the solar maximum and solar minimum. These results provide evidence that the effect of cosmic rays on CCN and clouds through the ion-aerosol clear-sky mechanism is limited by dampening from aerosol processes.
机译:据报道,宇宙射线向大气中的通量与云和气溶胶特性相关。这些相关性的一个提出机制是“离子气溶胶透明空气”机构,其中宇宙射线调节大气离子浓度,离子诱导的气溶胶成核和云凝结核(CCN)浓度。我们使用具有在线气溶胶微生物的全球化学传输模型,探讨CCN浓度对宇宙射线通量的依赖性。在以前的工作中扩展,我们测试宇宙射线/ CCN连接到多个不确定参数的敏感性,包括初级排放,二次有机气溶胶(SOA)缩合和充电致密的致密生长。当模拟随着初级排放减少而运行时,CCN对宇宙射线的敏感性增加,但显示了从增加的二次有机气溶胶和电荷增强的生长量的依赖性行为。对于所有测试用例,太阳能最小(高宇宙射线通量)和太阳能最大(低宇宙射线通量)模拟的颗粒浓度大于80nm的变化小于0.2%。大于10nm的颗粒总数的变化较大,但总是小于1%。所有测试用例都可以忽略柱集成的模拟变化此外,我们测试预测的气溶胶敏感性至周长的Forbush减少宇宙射线,发现这些情况的最大变化是气溶胶特性的最大变化类似于太阳能最大值和太阳能之间的稳态气溶胶差异。这些结果提供了证据表明,通过离子气溶胶透明天空机构抑制来自气溶胶过程的宇宙射线对CCN和云的影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号