首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions
【24h】

Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions

机译:北极地表云辐射强迫的重新评估:考虑表面 - 玻璃云相互作用

获取原文
           

摘要

The concept of cloud radiative forcing (CRF) is commonly applied to quantify the impact of clouds on the surface radiative energy budget (REB). In the Arctic, specific radiative interactions between microphysical and macrophysical properties of clouds and the surface strongly modify the warming or cooling effect of clouds, complicating the estimate of CRF obtained from observations or models. Clouds tend to increase the broadband surface albedo over snow or sea ice surfaces compared to cloud-free conditions. However, this effect is not adequately considered in the derivation of CRF in the Arctic so far. Therefore, we have quantified the effects caused by surface-albedo–cloud interactions over highly reflective snow or sea ice surfaces on the CRF using radiative transfer simulations and below-cloud airborne observations above the heterogeneous springtime marginal sea ice zone (MIZ) during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign. The impact of a modified surface albedo in the presence of clouds, as compared to cloud-free conditions, and its dependence on cloud optical thickness is found to be relevant for the estimation of the shortwave CRF. A method is proposed to consider this surface albedo effect on CRF estimates by continuously retrieving the cloud-free surface albedo from observations under cloudy conditions, using an available snow and ice albedo parameterization. Using ACLOUD data reveals that the estimated average shortwave cooling by clouds almost doubles over snow- and ice-covered surfaces (?62W?m?2 instead of ?32W?m?2), if surface-albedo–cloud interactions are considered. As a result, the observed total (shortwave plus longwave) CRF shifted from a warming effect to an almost neutral one. Concerning the seasonal cycle of the surface albedo, it is demonstrated that this effect enhances shortwave cooling in periods when snow dominates the surface and potentially weakens the cooling by optically thin clouds during the summertime melting season. These findings suggest that the surface-albedo–cloud interaction should be considered in global climate models and in long-term studies to obtain a realistic estimate of the shortwave CRF to quantify the role of clouds in Arctic amplification.
机译:云辐射强制(CRF)的概念通常适用于量化云对表面辐射能源预算(Reb)的影响。在北极,云的微神科和宏观物理特性之间的特异性辐射相互作用强烈地改变云的升温或冷却效果,使得从观察或模型获得的CRF的估计复杂化。与无云条件相比,云倾向于将宽带表面Albedo增加雪或海冰表面。然而,到目前为止,北极CRF的推导不足,这种效果不得充分考虑。因此,我们已经通过在北极期间,在CRF上使用辐射转移模拟和低于异构春天边缘海冰区(MIZ),对CRF对CRF高度反射雪或海冰表面上的高度反射雪或海冰表面上的相互作用进行了量化的影响在极地(Acloud)运动期间使用空中测量的云观察。与无云条件相比,在云的存在下,改性表面反玻璃的影响与其对云光学厚度的依赖性相比,估计短波CRF。提出了一种方法,以考虑这种表面反向对CRF估计的影响,通过使用可用的雪和冰和冰块参数化在多云条件下从观察中连续检索无云表面反玻璃。使用ACLoud数据显示,如果考虑过表面 - 反向云相互作用,则云覆盖的估计平均短波冷却几乎使云几乎翻倍(x62w?m≤2,而不是Δ2w≤2)。结果,观察到的总(短波加长波)CRF从变暖效果转移到几乎中立的效果。关于表面Albedo的季节性循环,证明这种效果在雪地占据雪地占据雪地的主导地位时,这种效果在周期内提高了短波冷却,并且在夏季熔化季节中通过光学薄云削弱了冷却。这些研究结果表明,在全球气候模型中应考虑表面 - 反向云相互作用,并在长期研究中考虑,以获得短波CRF的实际估计,以量化云在北极扩增中的作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号