首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations
【24h】

Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations

机译:通过整合垂直解决的气溶胶观察来减少亚热带云相互作用的卫星估计的不确定性

获取原文
           

摘要

Satellite quantification of aerosol effects on clouds relies on aerosol optical depth (AOD) as a proxy for aerosol concentration or cloud condensation nuclei (CCN). However, the lack of error characterization of satellite-based results hampers their use for the evaluation and improvement of global climate models. We show that the use of AOD for assessing aerosol–cloud interactions (ACIs) is inadequate over vast oceanic areas in the subtropics. Instead, we postulate that a more physical approach that consists of matching vertically resolved aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite at the cloud-layer height with Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud retrievals reduces uncertainties in satellite-based ACI estimates. Combined aerosol extinction coefficients (σ) below cloud top (σBC) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud droplet number concentrations (Nd) from MODIS Aqua yield high correlations across a broad range of σBC values, with σBC quartile correlations ≥0.78. In contrast, CALIOP-based AOD yields correlations with MODIS Nd of 0.54–0.62 for the two lower AOD quartiles. Moreover, σBC explains 41% of the spatial variance in MODIS Nd, whereas AOD only explains 17%, primarily caused by the lack of spatial covariability in the eastern Pacific. Compared with σBC, near-surface σ weakly correlates in space with MODIS Nd, accounting for a 16% variance. It is concluded that the linear regression calculated from ln(Nd)–ln(σBC) (the standard method for quantifying ACIs) is more physically meaningful than that derived from the Nd–AOD?pair.
机译:卫星对云的卫星效应的定量依赖于气溶胶光学深度(AOD)作为气溶胶浓度或云凝结核(CCN)的代理。然而,卫星的结果缺乏误差表征妨碍了它们用于评估和改进全球气候模型的用途。我们表明,用于评估Aerosol-Cloud互动(ACIS)的AOD的使用在亚波质中的广阔海洋区域不足。相反,我们假设一种更具物理方法,包括从云 - 气溶胶激光雷达和红外探测卫星观测(Calipso)卫星的垂直解决的气溶胶数据与中度分辨率成像光谱辐射计(MODIS)Aqua Cloud检索减少基于卫星的ACI估计的不确定性。从Modis Aqua的正交偏振(Caliop)和云液滴数浓度(ND)的云 - 气溶胶激光雷达下方的云顶(σbc)组合的云层消光系数(σ)和云液滴数浓度(nd)产生高度σbc值的高相关,具有σbc四分位数相关性≥0.78。相反,基于卡利普的AOD与两个下AOD四分位数的0.54-0.62的MODIS ND产生相关性。此外,ΣBC解释了MODIS ND的空间方差的41%,而AOD仅解释了17%,主要是由于东太平洋的空间变性缺乏。与ΣBC相比,近表面Σ与MODIS ND的空间弱相关,占16%方差。结论:(ND)-ln(σBC)从LN中计算出的线性回归(标准方法用于量化的ACI)比从所述的Nd-AOD?对导出更多物理意义。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号