首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms
【24h】

Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

机译:在雷暴中解决汞清除和沉积的云分辨模拟

获取原文
           

摘要

This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species – gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), collectively Hg(II) – in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Mercury scavenging efficiencies from various initial altitudes are diagnosed for a case study of a typical strong convective storm in the Southeast US. Assuming that soluble mercury concentrations are initially vertically uniform, the model results suggest that 60% of mercury deposited to the surface in rainwater originates from above the boundary layer ( 2 km). The free troposphere could supply a larger fraction of mercury wet deposition if GOM and HgP concentrations increase with altitude. We use radiosonde observations in the Northeast and Southeast to characterize three important environmental characteristics that influence thunderstorm morphology: convective available potential energy (CAPE), vertical shear (0–6 km) of horizontal wind (SHEAR) and precipitable water (PW). The Southeast US generally has lower SHEAR and higher CAPE and PW. We then use RAMS to test how PW and SHEAR impact mercury scavenging and deposition, while keeping the initial Hg(II) concentrations fixed in all experiments. We found that the mercury concentration in rainfall is sensitive to SHEAR with the nature of sensitivity differing depending upon the PW. Since CAPE and PW cannot be perturbed independently, we test their combined influence using an ensemble of thunderstorm simulations initialized with environmental conditions for the Northeast and Southeast US. These simulations, which begin with identical Hg(II) concentrations, predict higher mercury concentrations in rainfall from thunderstorms forming in the environmental conditions over the Southeast US compared to the Northeast US. A final simulation of a stratiform rain event produces lower mercury concentrations than in thunderstorms forming in environments typical of the Southeast US. The stratiform cloud scavenges mercury from the lowest ~ 4 km of the atmosphere, while thunderstorms scavenge up to ~ 10 km.
机译:本研究检查了影响汞(HG)湿清除和降雨中浓度的对流云的动态和微神经特征。在区域大气建模系统(RAMS)中使用理想的数值模型模拟,我们诊断垂直运输和清除可溶性HG物种 - 气体氧化汞(GOM)和颗粒状汞(HGP),统称HG(II) - 在雷暴中典型的环境条件在东北和美国(美国)(美国)。来自各种初始高度的水星清除效率被诊断为案例研究美国东南部典型的强烈对流风暴。假设可溶性汞浓度最初是垂直均匀的,模型结果表明60%的汞沉积在雨水中的表面源自边界层(> 2公里)。如果GOM和HGP浓度随高度增加,则自由过层可能提供较大的汞湿沉积。我们在东北和东南部使用无线电探测器观察,表征了影响雷暴形态的三个重要环境特征:对流可用的潜在能量(斗篷),水平风(剪切)和可降水水(PW)的垂直剪切(0-6公里)。东南美国通常具有较低的剪切和更高的斗篷和PW。然后,我们使用公羊来测试PW和剪切汞扫除和沉积的方式,同时保持所有实验中固定的初始HG(II)浓度。我们发现降雨中的汞浓度对剪切敏感,而敏感性的性质取决于PW。由于Cape和PW无法独立扰乱,我们使用雷暴模拟的集合来测试它们的综合影响,初始化东北和东南部的环境条件。这些模拟以相同的HG(II)浓度开始,预测从美国东南部的环境条件中形成的雷暴中的降雨量更高的汞浓度。层状雨事件的最终模拟产生较低的汞浓度,而不是在美国典型的典型环境中形成的雷暴。从最低〜4公里的大气中扫除了水晶扫除的水星,而雷暴会清除〜10公里。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号