首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects
【24h】

Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

机译:用OMI卫星仪器观察到紫外线气溶胶指数,以了解有机气溶胶的吸收:对大气氧化和直接辐射效应的影响

获取原文
           

摘要

Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (?0.32 to ?0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from ?0.57 to ?0.09 over West Africa in January, from ?0.32 to +0.0002 over South Asia in April, from ?0.97 to ?0.22 over southern Africa in July, and from ?0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing ?ngstr?m exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV–Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30?% over South America in September, up to 20?% over southern Africa in July, and up to 15?% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68?years, thus reducing the bias against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the radiative transfer model RRTMG (GC-RT). Treating organic aerosol as containing more strongly absorbing BrC changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.03 W m?2 and all-sky surface DRE by ?0.08 W m?2. Regional changes of up to +0.3 W m?2 at TOA and down to ?1.5 W m?2 at the surface are found over major biomass burning regions.
机译:紫外线气溶胶指数(UVAI)的卫星观察对气溶胶的太阳辐射吸收敏感;这种吸收会影响光解频率和辐射强制。我们使用与向量线性化离散纵坐标辐射转移模型(VLIDORT)相结合的3-D化学传输模型Geos-Chem制定UVAI的全球模拟。应用模拟以解释2007年臭氧监测仪器(OMI)的UVAI观察。模拟和观测的值在矿物粉尘占据UVAI的地区高度一致,但存在大的负面偏差(?0.32至0.97)生物质燃烧区中的模拟和观察值之间。我们确定吸收有机气溶胶的有效光学性质,称为棕色碳(BRC),并将它们实施成Geos-Chem以更好地代表在生物量燃烧区域上观察到的UVAI值。吸收BRC在1月份从南亚70%到0.32至+0.0002,从南亚0.97至0.22到南部非洲的南亚0.32至+0.0002,从?0.97至0.22在9月份南美洲的南美洲和0.50至+0.33。在模型中包括BRC在内的吸收的光谱依赖性与报告的生物质燃烧气溶胶的观察结果广泛一致,吸收Δngstrαm指数(AAE)值在紫外线(UV)中的2.9中,在紫外线附近的紫外线(UV)中。光谱。通过检查Geos-Chem中的对流层羟基自由基(OH)浓度,评估BRC对大气光化学的额外紫外线吸收的影响。将BRC纳入南美洲的南美少至多30岁,7月份高达20?%,在其他生物量燃烧地区的其他生物量燃烧地区达到了高达20?%。由于存在吸收BRC的存在,Geos-Chem的全局年平均值浓度降低,从5.62增加到5.68℃,从而增加甲基氯仿寿命。因此,降低了对观察值的偏差。我们使用Geos-Chem与辐射转移模型RRTMG(GC-RT)相结合来计算BRC的直接辐射效果(DRE)。将有机气溶胶含有更强烈的吸收BRC将全球年平均全天顶部(TOA)DRE的全球平均值(TOA)DRE变为+0.03 W M?2和全天表面DREΔ0.08WM≤2。在TOA和下降到达到+0.3 W m?2的区域变化,在主要生物质燃烧区域上发现了1.5 W m?2。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号