首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison
【24h】

Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model intercomparison

机译:FOSEIL燃料排放不确定性对欧洲的重要性CO2模型:模型互相

获取原文
           

摘要

Inverse modeling techniques used to quantify surface carbon fluxes commonly assume that the uncertainty of fossil fuel CO2 (FFCO2) emissions is negligible and that intra-annual variations can be neglected. To investigate these assumptions, we analyzed the differences between four fossil fuel emission inventories with spatial and temporal differences over Europe and their impact on the model simulated CO2 concentration. Large temporal flux variations characterize the hourly fields (~40 % and ~80 % for the seasonal and diurnal cycles, peak-to-peak) and annual country totals differ by 10 % on average and up to 40 % for some countries (i.e., the Netherlands). These emissions have been prescribed to seven different transport models, resulting in 28 different FFCO2 concentrations fields. The modeled FFCO2 concentration time series at surface sites using time-varying emissions show larger seasonal cycles (+2 ppm at the Hungarian tall tower (HUN)) and smaller diurnal cycles in summer (?1 ppm at HUN) than when using constant emissions. The concentration range spanned by all simulations varies between stations, and is generally larger in winter (up to ~10 ppm peak-to-peak at HUN) than in summer (~5 ppm). The contribution of transport model differences to the simulated concentration std-dev is 2–3 times larger than the contribution of emission differences only, at typical European sites used in global inversions. These contributions to the hourly (monthly) std-dev's amount to ~1.2 (0.8) ppm and ~0.4 (0.3) ppm for transport and emissions, respectively. First comparisons of the modeled concentrations with 14C-based fossil fuel CO2 observations show that the large transport differences still hamper a quantitative evaluation/validation of the emission inventories. Changes in the estimated monthly biosphere flux (Fbio) over Europe, using two inverse modeling approaches, are relatively small (less that 5 %) while changes in annual Fbio (up to ~0.15 % GtC yr?1) are only slightly smaller than the differences in annual emission totals and around 30 % of the mean European ecosystem carbon sink. These results point to an urgent need to improve not only the transport models but also the assumed spatial and temporal distribution of fossil fuel emission inventories.
机译:用于量化表面碳通量的逆建模技术通常假设化石燃料二氧化碳(FFCO2)排放的不确定性可忽略不计,并且可以忽略年内变化。为了调查这些假设,我们分析了四种化石燃料排放库存与欧洲的空间和时间差异之间的差异及其对模型模拟CO2浓度的影响。大型时间磁通变化表征每小时场(季节性和昼夜周期的〜40%和80%,峰值至高峰)和年度国家总量平均差异10%,对于某些国家/地区达到40%(即,荷兰人)。这些排放已被规定为七种不同的运输模型,导致28种不同的FFCO2浓度字段。使用时变排放的表面位点的建模的FFCO2浓度时间序列显示出较大的季节性循环(匈牙利高塔(Hun)+2 ppm),夏季较小的昼夜循环(在匈奴时)比使用恒定排放量。所有模拟所跨越的浓度范围在车站之间变化,并且在冬季(在冬季最高〜10ppm至峰时峰值峰值达到峰值),而不是在夏季(〜5ppm)之间。运输模型对模拟浓度的差异STD-DEV的贡献仅比仅在全球反转中使用的典型欧洲站点的发射差异的2-3倍。这些贡献分别对每小时(每月)STD-DEV的贡献分别用于运输和排放的〜0.4(0.8)PPM和〜0.4(0.3)PPM。第一次与14C基化石燃料CO2观察的模型浓度的比较表明,大型运输差异仍然阻碍了排放清单的定量评估/验证。使用两种反向建模方法的欧洲估计的月生物圈通量(FBIO)的变化相对较小(较少5%),而年度FBIO的变化(高达约0.15%GTC YR?1)仅略小于年度排放总量的差异和大约30%的欧洲生态系统碳汇。这些结果迫切需要迫切需要改善传输模型,而且需要改善化石燃料发射库存的假设空间和时间分布。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号