首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >The impact of atmospheric mineral aerosol deposition on the albedo of snow sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?
【24h】

The impact of atmospheric mineral aerosol deposition on the albedo of snow sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

机译:大气矿物气气溶胶沉积对雪海冰的Albedo的影响:雪和海冰光学性能比矿物气溶胶光学性能更重要吗?

获取原文
           

摘要

Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow) show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.
机译:对极地地区的反​​医生的了解对于了解一系列对全球范围产生影响的气候过程至关重要。沉积在雪和海冰的大气气溶胶中的光吸收杂质,通过海湾运输吸收太阳辐射,减少了反博德。在这里,考虑了五种矿物气沉积物减少了北极雪和海冰的Albedo的效果。采用耦合大气和雪/海冰/海冰辐射转移模型(Tuv-snow)的计算表明,矿物气溶胶沉积物的影响强烈依赖于雪或海冰型而不是气溶胶光学特性之间的差异。在五个不同矿物质气溶胶沉积物之间的折射率之间的折射率变化的变化率为2倍,最多达到0.0788,而冷极雪和熔化海冰之间的差异为0.8893,相同的矿物负荷为0.8893。令人惊讶的是,雪冰的表面层的厚度与矿物粉末相同质量比的厚度对Albedo几乎没有影响。相反,两个含有相同矿物气溶胶质量比的两个雪屑的表面反照杯是相似的,载荷是否均匀地分布或浓缩,无论它们的位置还是间隔。矿山冰冰冰冰的影响比其他类型的雪和海冰更大。因此,与熔化海冰相关的夏季熔体周期期间的短波辐射的较高输入加速了熔体过程。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号