首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations
【24h】

Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations

机译:混合相位对流云中的气溶胶云相互作用 - 第1部分:气溶胶扰动

获取原文
           

摘要

Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ~5km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud–AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
机译:(云顶部高度〜5公里)沿海风收敛线显影在中等深度的混合相流云诱导扰动气雾剂条件的变化具有高分辨率数值模型模拟进行了研究。该模拟使用新开发的云气溶胶微物理相互作用(CASIM)的统一模型(UM),其允许云和气溶胶场之间的双向交互的表示模块。仿真针对对流降水实验期间收集的观测评价(COPE)字段运动在英国西南半岛在2013年的模拟与观察到的热力学型材,云底云滴数浓度(CDNC),云深度,和雷达相媲美反射率的统计数据。包括云的微物理过程气雾剂领域的修改提高了与观察CDNC值和空间变化的对应关系,但会降低与平均大小云和云顶部高度观察该协议。积累沉淀被抑制高气溶胶条件之前,云变成沿着海风辐合线组织。降水量的变化是与气溶胶处理仿真小。降水抑制是由于效率较低的沉淀产量预热阶段微观,以包裹模型预测相一致。相比之下,对流单体后沿海风辐合区组织,与气溶胶浓度累积降水增加。与气溶胶浓度冷凝产量的增加是由于对流芯更高垂直速度和更高的云顶部的高度。然而,对于最高气溶胶情况下,在冷凝物生产不再增加时,如云成长为上位稳定层。在这些情况下,降低的沉淀效率(PE)占主导地位的沉淀反应并没有进一步沉淀增强发生。深流云以前的研究已经冻结相关的高气雾剂条件下更大的垂直速度到更高的潜热。在上面的0℃潜热所呈现的模拟的变化是可忽略的,但是从与气溶胶浓度增加冷凝潜热加热。这是假设,这种增加是在云领域的结构减少对环境空气的混合进入对流核心的变化。沿公认收敛线更深混合相云的沉淀反应可以是从包裹模型的预测相反。当云与预先存在的热环境和云计算领域的结构变化相互作用发生不是由简单的包裹模型捕获办法发生这种情况。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号