首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone
【24h】

European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone

机译:来自OMI的WRF-Chem的欧洲NOx排放:对夏季表面臭氧的影响

获取原文
           

摘要

Ozone (O3) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor group nitrogen oxides (NOx=NO+NO2) contribute to these biases. The goal of this study is to use NO2 column observations from the Ozone Monitoring Instrument (OMI) satellite sensor to infer top-down NOx emissions in the regional Weather Research and Forecasting model with coupled chemistry (WRF-Chem) and to evaluate the impact on simulated surface O3 with in situ observations. We first perform a simulation for July?2015 over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of mean ozone concentrations is reproduced satisfactorily. However, the simulated maximum daily 8h ozone concentration (MDA8 O3) is underestimated (mean bias error of ?14.2μgm?3), and its spread is too low. We subsequently derive satellite-constrained surface NOx emissions using a mass balance approach based on the relative difference between OMI and WRF-Chem NO2 columns. The method accounts for feedbacks through OH, NO2's dominant daytime oxidant. Our optimized European NOx emissions amount to 0.50TgN (for July 2015), which is 0.18TgN higher than the bottom-up emissions (which lacked agricultural soil NOx emissions). Much of the increases occur across Europe, in regions where agricultural soil NOx emissions dominate. Our best estimate of soil NOx emissions in July 2015 is 0.1TgN, much higher than the bottom-up 0.02TgN natural soil NOx emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN). A simulation with satellite-updated NOx emissions reduces the systematic bias between WRF-Chem and OMI NO2 (slope=0.98, r2=0.84) and reduces the low bias against independent surface NO2 measurements by 1.1μgm?3 (?56%). Following these NOx emission changes, daytime ozone is strongly affected, since NOx emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0μgm?3, and increases of 10μgm?3 are seen in regions with large emission increases. With respect to the initial simulation, MDA8 O3 has an improved spatial distribution, expressed by an increase in r2 from 0.40 to 0.53, and a decrease of the mean bias by 7.4μgm?3 (48%). Overall, our results highlight the dependence of surface ozone on its precursor NOx and demonstrate that simulations of surface ozone benefit from constraining surface NOx emissions by satellite NO2 column observations.
机译:臭氧(O3)是一种对人类和生态系统健康产生负面影响的二级空气污染物。具有区域空气质量模型的臭氧模拟在欧洲遭受了不明原因的偏见,并且臭氧前体基氮氧化物排放(NOx = NO + NO2)的不确定性有助于这些偏差。本研究的目标是使用臭氧监测仪器(OMI)卫星传感器的NO2色谱柱观测,以推断区域天气研究和预测模型的自上而下的NOx排放,耦合化学(WRF-CHEM)并评估对抗的影响模拟表面O3与原位观察。我们首先在欧洲举办七月进行模拟,并从空中级网络评估其对原地观测的性能。平均臭氧浓度的空间分布令人满意地再现。然而,模拟的最大每日8H臭氧浓度(MDA8 O3)被低估(平均偏置误差?14.2μgm≤3),其涂抹太低。我们随后使用基于OMI和WRF-CHEMO2柱之间的相对差异的质量平衡方法来推导卫星约束的表面NOx排放。该方法占通过OH,No2的主要白天氧化剂的反馈。我们优化的欧洲NOx排放量为0.50tgn(2015年7月),比自下而上排放量高0.18tgn(缺乏农业土壤Nox排放)。在农业土壤Nox排放占主导地位的地区,欧洲的大部分增加了很多。我们对2015年7月的土壤NOx排放的最佳估计是0.1tgn,远高于自然气体排放模型的自下而上为0.02tgn天然土壤Nox排放(梅根)。具有卫星更新的NOx排放的模拟可降低WRF-CHEM和OMI NO2之间的系统偏压(斜率= 0.98,R2 = 0.84),并将对独立表面NO2测量的低偏差降低1.1μgm≤3(?56%)。在这些NOx排放变化之后,日间臭氧受到强烈影响,因为NOx排放变化特别影响白天臭氧地层。每月平均模拟日间臭氧增加6.0μgm≤3,并且在具有大发射增加的区域中可以看到10μgm的增加。关于初始模拟,MDA8 O3具有改善的空间分布,其r2从0.40至0.53的增加表示,并且平均偏差减少7.4μgm≤3(48%)。总体而言,我们的结果突出了表面臭氧对其前体NOx的依赖性,并证明了表面臭氧的模拟受卫星NO2柱观察的约束表面NOx排放。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号