首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
【24h】

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1

机译:CCMI-1模型模拟中羟基自由基差异的机器学习检查

获取原文
           

摘要

The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV light to the troposphere (indicated by the photolysis frequency JO1D), the mixing ratio of tropospheric ozone (O3), the abundance of nitrogen oxides (NOx≡NO+NO2), and details of the various chemical mechanisms that drive OH. Water vapour, carbon monoxide (CO), the ratio of NO:NOx, and formaldehyde (HCHO) explain moderate differences in τCH4, while isoprene, methane, the photolysis frequency of NO2 by visible light (JNO2), overhead ozone column, and temperature account for little to no model variation in τCH4. We also apply the NNs to analysis of temporal trends in OH from 1980 to 2015. All models that participated in the specified dynamics historical simulation for CCMI demonstrate a decline in τCH4 during the analysed timeframe. The significant contributors to this trend, in order of importance, are tropospheric O3, JO1D, NOx, and H2O, with CO also causing substantial interannual variability in OH burden. Finally, the identified trends in τCH4 are compared to calculated trends in the tropospheric mean OH concentration from previous work, based on analysis of observations. The comparison reveals a robust result for the effect of rising water vapour on OH and τCH4, imparting an increasing and decreasing trend of about 0.5% decade?1, respectively. The responses due to NOx, ozone column, and temperature are also in reasonably good agreement between the two studies.
机译:羟基自由基(OH)在对流层内起重要作用,例如确定甲烷(CH4)的寿命,但由于其快速循环和对多种来源和水槽的依赖性而挑战模型。结果,难以诊断的型号和时间之间的OH和所得甲烷寿命(τch4)的变化的原因难以诊断。我们应用一个神经网络(NN)方法来解决参与化学气候模型倡议(CCMI)的一组模型中的这个问题。对CCMI进行的历史指定动态模拟的分析表明,10种型号之间的τch4差异的主要驱动器是对流层的UV光通量(由光解频jo1d表示),对流层臭氧(O3)的混合比(O3)的混合比例。氮氧化物的丰富(Nox≡no+ No2),以及驱动OH的各种化学机制的细节。水蒸气,一氧化碳(CO),NO:NOx和甲醛(HCHO)的比例解释τch4中的中等差异,而异戊二烯,甲烷,NO 2的光解频率通过可见光(JNO2),桥面臭氧柱和温度帐户几乎没有τch4中的模型变化。我们还将NNS应用于1980年至2015年oh的时间趋势分析。所有参与指定动态的模型,用于CCMI的历史模拟,在分析的时间表期间τch4中的τch4下降。这一趋势的重要贡献者是对重要的,是对流层O3,JO1D,NOx和H2O,有同源的哦负担也造成了大量的际变异性。最后,将τCH4中的识别趋势进行比较,基于观察分析,与先前工作的对流层平均值浓度的计算趋势。比较揭示了在OH和τCH4上上升水蒸气的效果的鲁棒结果,分别赋予增加和降低趋势约0.5%十年的趋势。由于NOx,臭氧柱和温度导致的响应也与两项研究之间相当好的协议。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号