首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing
【24h】

Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

机译:支持CMIP5模拟的臭氧数据库:结果和相应的辐射强制

获取原文
           

摘要

A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISS-PUCCINI) and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23 W m?2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of ?0.08 W m?2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of ?0.05 W m?2, but which is within the stated range of ?0.15 to +0.05 W m?2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m?2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
机译:已经产生了从1850年至2099年的连续的对流层和平流层垂直分辨的臭氧时间序列,以便在全球气候模型中使用,这些模型不包括互动化学。 SAGE I + II卫星观测和极性臭氧地区测量的多元线性回归分析在1979年至2009年期间观测到的时间内的平流层区平均数据集使用。除了描述平均年度周期的术语外,回归包括代表的术语等效有效的平坦氯(EESC)和11 yr太阳循环变异性。 EESC回归配合系数与1979年EESC值一起用于将平流层臭氧时间序列推向至1850.虽然可以使用类似的程序来推断到未来,耦合化学气候模型(CCM)模拟表明未来的平流层臭氧丰度可能受到气候变化的显着影响,并通过回归模型方法捕获这些效果是不可行的。因此,平流层臭氧数据集延伸到未来(2009年合并),其中来自13个CCM的多模型平均投影,在SRES下执行了模拟(发射方案的特殊报告)A1B温室气体场景和A1调整后的卤素第二轮化学气候模型验证(CCMVAL-2)活动的情景。平流层区平均臭氧时间序列与从过去的两种CCMS(CAM3.5和GISS-PUCCINI)的模拟中提取的三维对流层数据集合并,并将未来由一个CCM(CAM3.5)。未来的对流层臭氧时间序列继续历史CAM3.5仿真直至等四种不同代表浓度途径(RCPS)之后的2099。臭氧数据库和卫星观测的历史段之间发现了一般良好的一致性,尽管应该指出的是,在弹簧和对流层臭氧液期间,在南部极性纬度中,臭氧在南部极性纬度略微低估。对流层臭氧的垂直曲线与臭氧和原位测量的广泛一致,具有一些偏差在生物质燃烧的区域。从1850年代到2000年代的对流层臭氧辐射强制(RF)为0.23W M?2,低于以前的结果。较低的值主要是由于(i)的生物质燃烧排放量较小; (ii)在高南部灾区上对流层臭氧对上层臭氧耗损的较大影响;与之前的辐射强制计算相比,可能(iii)云(其采用以减少净胁迫)的更大影响。在同一时期,分流层臭氧的减少,主要处于高纬度,产生射频的射频?0.08 W m?2,比中央政府间气候变化小组更加负(IPCC)第四评估报告(AR4)价值? 0.05 W m?2,但在陈述范围内?0.15至+ 0.05 W m?2。由于回归模型在1979年之前模拟了大量臭氧耗尽,符合EESC的增加和由CCM的增加,而AR4在1979年之前假设Stratospheric RF的变化,则越大的负值。相似的幅度仍然存在于未来,尽管其位置从高纬度到热带地区的转变。这种转变是由于极地平流层臭氧的增加,但热带下划线臭氧的增加,与强化酿酒师 - 多森循环有关,特别是通过21世纪下半叶的加强。四个RCP中的对流层臭氧的趋势的差异主要由不同的甲烷浓度驱动,导致一系列的对流层臭氧RF在0.4和0.1Wm≥2到2100.这里描述的臭氧数据集已被释放用于耦合模型互通PCMDI网站上Netcdf气候和预测(CF)元数据约定的项目(CMIP5)模型模拟​​(http://cmip-pcmdi.llnl.gov/)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号