首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events
【24h】

Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events

机译:1980 - 2016年印度jammu和克什米尔地区温度和降水分析:对远程影响和极端事件的影响

获取原文
           

摘要

The local weather and climate of the Himalayas are sensitive and interlinked with global-scale changes in climate, as the hydrology of this region is mainly governed by snow and glaciers. There are clear and strong indicators of climate change reported for the Himalayas, particularly the Jammu and Kashmir region situated in the western Himalayas. In this study, using observational data, detailed characteristics of long- and short-term as well as localized variations in temperature and precipitation are analyzed for these six meteorological stations, namely, Gulmarg, Pahalgam, Kokarnag, Qazigund, Kupwara and Srinagar during 1980–2016. All of these stations are located in Jammu and Kashmir, India. In addition to analysis of stations observations, we also utilized the dynamical downscaled simulations of WRF model and ERA-Interim (ERA-I) data for the study period. The annual and seasonal temperature and precipitation changes were analyzed by carrying out Mann–Kendall, linear regression, cumulative deviation and Student's t statistical tests. The results show an increase of 0.8°C in average annual temperature over 37?years (from 1980 to 2016) with higher increase in maximum temperature (0.97°C) compared to minimum temperature (0.76°C). Analyses of annual mean temperature at all the stations reveal that the high-altitude stations of Pahalgam (1.13°C) and Gulmarg (1.04°C) exhibit a steep increase and statistically significant trends. The overall precipitation and temperature patterns in the valley show significant decreases and increases in the annual rainfall and temperature respectively. Seasonal analyses show significant increasing trends in the winter and spring temperatures at all stations, with prominent decreases in spring precipitation. In the present study, the observed long-term trends in temperature (°Cyear-1) and precipitation (mm?year?1) along with their respective standard errors during 1980–2016 are as follows: (i)?0.05 (0.01) and ?16.7 (6.3) for Gulmarg, (ii)?0.04 (0.01) and ?6.6 (2.9) for Srinagar, (iii)?0.04 (0.01) and ?0.69 (4.79) for Kokarnag, (iv)?0.04 (0.01) and ?0.13 (3.95) for Pahalgam, (v)?0.034 (0.01) and ?5.5 (3.6) for Kupwara, and (vi)?0.01 (0.01) and ?7.96 (4.5) for Qazigund. The present study also reveals that variation in temperature and precipitation during winter (December–March) has a close association with the North Atlantic Oscillation (NAO). Further, the observed temperature data (monthly averaged data for 1980–2016) at all the stations show a good correlation of 0.86 with the results of WRF and therefore the model downscaled simulations are considered a valid scientific tool for the studies of climate change in this region. Though the correlation between WRF model and observed precipitation is significantly strong, the WRF model significantly underestimates the rainfall amount, which necessitates the need for the sensitivity study of the model using the various microphysical parameterization schemes. The potential vorticities in the upper troposphere are obtained from ERA-I over the Jammu and Kashmir region and indicate that the extreme weather event of September?2014 occurred due to breaking of intense atmospheric Rossby wave activity over Kashmir. As the wave could transport a large amount of water vapor from both the Bay of Bengal and Arabian Sea and dump them over the Kashmir region through wave breaking, it probably resulted in the historical devastating flooding of the whole Kashmir valley in the first week of September?2014. This was accompanied by extreme rainfall events measuring more than 620mm in some parts of the Pir Panjal range in the south Kashmir.
机译:喜马拉雅山的当地天气和气候是敏感的,并与气候的全球变化相互关联,因为该地区的水文主要受雪和冰川的管辖。 Himalayas的清晰和强大的气候变化指标,特别是位于喜马拉雅市西部的Jammu和Kashmir地区。在这项研究中,使用观察数据,对于这六个气象站,即Gulmarg,Pahalgam,Kokarnag,Qazigund,Kupwara和Srinagar,分析了长期和短期的详细特征以及局部的温度和降水的局部变化,以及1980年期间2016年。所有这些车站都位于印度的Jammu和Kashmir。除了分析站观测的外,我们还利用了用于研究期间的WRF模型和时期(ERA-I)数据的动态俯卧模拟。通过进行Mann-Kendall,线性回归,累积偏差和学生的T统计测试来分析年龄和季节性温度和降水变化。结果表明,平均年度温度超过37°C超过37℃(从1980年至2016年),与最小温度(0.97℃)相比,最高温度(0.97℃)升高。所有车站的年平均温度分析表明,Pahalgam(1.13°C)和Gulmarg(1.04°C)的高空站表现出陡峭的增加和统计学意义的趋势。谷的整体降水和温度模式显现出显着降低,分别增加了年降雨量和温度。季节性分析显示冬季和春季气温的显着增加趋势,春季降水突出减少。在本研究中,在1980-2016期间观察到温度(°C-1)和沉淀(mm?年份Δ1)的沉淀(mm?yΔ1)的长期趋势如下:(i)?0.05(0.01)和?16.7(6.3)对于甘草,(ii)?0.04(0.01)和β.6.6(2.9)用于甲肾上腺素(III)?0.04(0.01)和kokarnag,(iv)的0.69(4.79)?0.04(0.01) (v)(v)?0.034(0.01)和kupwara的0.034(0.01)和(vi)和qazigund的0.01(0.01)和?7.96(4.5)的0.13(3.95)。本研究还揭示了冬季(12月至3月)温度和降水的变化与北大西洋振荡(NAO)密切相关。此外,观察到的温度数据(1980-2016的每月平均数据)在所有站点都显示出0.86的良好相关性,随着WRF的结果,因此模型较低的模拟被认为是对气候变化研究的有效科学工具地区。虽然WRF模型与观察到的降水之间的相关性显着强烈,但WRF模型明显低估了降雨量,这需要使用各种微专作参数化方案对模型的灵敏度研究。上层对流层中的潜在漩涡从时代和克什米尔地区获得了Era-I,并表明9月的极端天气事件是由于克什米尔上强烈的大气罗斯比波动活动发生了。由于波浪可以从孟加拉和阿拉伯海湾运输大量的水蒸气,并通过波浪拆分将它们倾倒在克什米尔地区,这可能导致整个克什米尔谷的历史毁灭性洪水在9月的第一周?2014年。这伴随着南卡什米尔Pir Panjal范围的一些部分超过620毫米的极端降雨事件。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号