首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
【24h】

Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions

机译:使用耦合的大型仿真 - 气溶胶辐射模型来调查城市雾霾:对气溶胶加载和气象条件的敏感性

获取原文
       

摘要

The aerosol–radiation–meteorology feedback loop is the process by which aerosols interact with solar radiation to influence boundary layer meteorology. Through this feedback, aerosols cause cooling of the surface, resulting in reduced buoyant turbulence, enhanced atmospheric stratification and suppressed boundary layer growth. These changes in meteorology result in the accumulation of aerosols in a shallow boundary layer, which can enhance the extent of aerosol–radiation interactions. The feedback effect is thought to be important during periods of high aerosol concentrations, for example, during urban haze. However, direct quantification and isolation of the factors and processes affecting the feedback loop have thus far been limited to observations and low-resolution modelling studies. The coupled large-eddy simulation (LES)–aerosol model, the University of California, Los Angeles large-eddy simulation – Sectional Aerosol Scheme for Large Scale Applications (UCLALES-SALSA), allows for direct interpretation on the sensitivity of boundary layer dynamics to aerosol perturbations. In this work, UCLALES-SALSA has for the first time been explicitly set up to model the urban environment, including addition of an anthropogenic heat flux and treatment of heat storage terms, to examine the sensitivity of meteorology to the newly coupled aerosol–radiation scheme. We find that (a)?sensitivity of boundary layer dynamics in the model to initial meteorological conditions is extremely high, (b)?simulations with high aerosol loading (220μgm?3) compared to low aerosol loading (55μgm?3) cause overall surface cooling and a reduction in sensible heat flux, turbulent kinetic energy and planetary boundary layer height for all 3d examined, and (c)?initial meteorological conditions impact the vertical distribution of aerosols throughout the day.
机译:气溶胶 - 辐射气象学反馈回路是气溶胶与太阳辐射相互作用以影响边界层气象的过程。通过该反馈,气溶胶导致表面冷却,导致浮力湍流降低,增强大气分层和抑制边界层生长。气象的变化导致浅边界层中的气溶胶积聚,这可以提高气溶胶辐射相互作用的程度。在高气溶胶浓度期间,反馈效应被认为是重要的,例如,在城市阴霾期间。然而,迄今为止对影响反馈环路的因素和过程的直接量化和隔离的分离仅限于观察和低分辨率建模研究。耦合的大涡仿真(LES)-Aerosol模型,加州大学洛杉矶大型涡流仿真 - 大型应用程序(Uclales-Salsa),允许直接解释边界层动力学的敏感性气溶胶扰动。在这项工作中,大卵石 - 萨尔萨已经首次明确地建立了建模城市环境,包括添加一种人为热通量和热储存术语的治疗,以研究气象学对新耦合气溶胶辐射方案的敏感性。我们发现(a)?模型中边界层动态的敏感性初始气象条件极高,(b)?与低气溶胶载荷(55μgm≤3)相比,具有高气溶胶载荷(220μgm≤3)的模拟,导致整体表面所有3D的冷却和降低可明智的热通量,湍流动能和行星边界层高度,(c)?初始气象条件局限性地影响气溶胶的垂直分布。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号