首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation
【24h】

Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

机译:水相中光化学衰老期间酚类SOA的分子转化:寡聚化,官能化和碎片中的竞争

获取原文
       

摘要

Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C?) and hydroxyl radical (?OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ?~??2?h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C?) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C? values is observed, varying from ?10?20?μg?m?3 for functionalized phenolic oligomers to ?10?μg?m?3 for small open-ring species. The detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.
机译:通过多种化学反应,在大气水相(例如,云和雾滴和少量水)中的常压水相(例如云和雾液滴和饮用的空气传播颗粒转化)的有机气溶胶。理解这些反应对于预测对气溶胶大气老化的预测理解以及对气候,空气质量和人类健康的影响是重要的。在这项研究中,我们研究了在具有两种氧化剂的酚类化合物反应期间形成的仲二有机气溶胶(AQSOA)的化学演变 - 芳族羰基(3C?)和羟基(oh)的三重态激发态。 AqSOA的分子组合物作为老化时间的函数的变化,使用离线纳米腐烂的解吸电喷雾电离质谱仪(纳米-DESI MS)表征了SOA质量,元素比例和平均碳氧化状态的实时演变(OSC )使用在线气溶胶质谱仪(AMS)进行监测。我们的结果表明,寡聚化是苯酚的重要水​​性反应途径,特别是在相当于α〜2的初始阶段的光氧化阶段。在北加州北部的午间冬季冬至阳光下的初始阶段。在后续反应时间官能化(即,向分子中添加极性含氧官能团)和碎裂(即,共价键的破碎)变得更加重要的方法,形成具有更高OSC值的官能化芳族和开环产物。碎片反应最终主导酚类AQSOA的光化学展开,形成大量具有低于6的碳数(NC)的高含氧开环分子。酚类AQSOA的平均Nc降低,而平均OSC在光化学老化过程中增加。另外,估计了几十多种最丰富的酚类酸AQSOA分子的饱和蒸汽压力(C?)。广泛的C?观察到值,从官能化酚醛寡聚体变化,从Δ10?μg≤3.对于小型开环物种,官能化酚醛寡聚蛋白为Δ10Ω·m≤3。丰富极低挥发性有机化合物(ELVOC)的检测表明酚类化合物的水性反应可能是大气中ELVOC的重要来源。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号