首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)
【24h】

LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

机译:LSA SAF Meteosat FRP产品 - 第2部分:用于哥白尼大气监测服务(CAM)的评估和演示

获取原文
       

摘要

Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9–13 % and 65–77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35 % over the Northern Africa region to 89 % over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near-real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 "mega-fire" event focused on Peloponnese (Greece) and used within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring Service (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from a geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions data sets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET (Aerosol Robotic Network) AOD indicates that the former is overestimated by ~ 20–30 %, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those implemented in the Monitoring Atmospheric Composition and Climate (MACC) series of projects for the CAMS.
机译:在非常高的时间分辨率下,使用从地球观测(EO)传感器安装在地静止卫星上的观测,最佳地实现了景观规模野火的动态。结果,已经从这种传感器的数据开发了许多操作的有源火产品。其中一个例子是由由纺纱增强的可见和红外成像仪收集的图像(Seviri)收集的图像(Seviri)由地表分析卫星应用设施(LSA SAF)产生的防火电源(FRP)产品,FRP - 像素和FRP-Grid产品。(Seviri )在Meteosat第二代(MSG)系列的地球静止EO卫星上。为提供这些FRP产品而开发的加工链检测了塞维利像素,其包含积极燃烧的火灾,并在覆盖欧洲和南部和南部和南部的南部和南部非洲的一部分的地理区域的FRP输出。玻璃钢-PIXEL产品含有最高的空间和时间分辨率FRP的数据集,而FRP-GRID产品包含一个时空摘要,其中包括云层和低FRP火像素的无检测偏差的调整。在这里,我们评估这两种产品免受由中等分辨率成像分光镜(MODIS)收集的主动火灾数据,并将结果与​​来自Seviri图像的三种替代活性消防产品进行比较。示出了FRP - 像素产品,以检测比替代的Seviri基产品的基本上更大量的有源火像素,并且与每次火基础的MODIS比较表明FRP值的强烈一致性和低偏差。然而,Seviri的低FRP火像素仍然未被发现,与非洲分别的MODIS相比,有效的火像素检测委员会和遗漏的误差,而非洲分别为9-13%和65-77%。相对于同时收集的MODIS数据的那些,遗漏更高的遗漏误差会更大低估区域FRP总数,从北非的35%到欧洲地区的89%。在欧洲和南美洲发现高度激动火箭遗漏和FRP低估的误差,并从这些地区的较大的像素区域产生。使用FRP来表征野火排放的优点是能够在近实时(NRT)中如此频繁地进行。为了说明这种方法的潜力,源自Seviri FRP-Pixel产品的野火燃料消耗率用于表征2007年“Mega-Fire”活动的烟雾排放,专注于伯罗奔尼撒(希腊),并在欧洲中等中使用范围天气预报(ECMWF)集成预测系统(IFS)作为在哥白尼大气监测服务(CAMS)内使用地静止主动火灾数据时可以实现的。使用MODIS光学图像的模型烟雾羽毛的定性比较说明了该模型捕获了羽毛的时间和空间动态,以及从地球静止轨道可获得的高的时间分辨率排放估计对于捕获次日是重要的烟雾羽流参数的可变性,例如气溶胶光学深度(AOD),其使用日常或较粗糙的时间分辨率排放数据集越来越少地解决。用重合修改和AeroNet(气溶胶机械网络)AOD的模型AOD的定量比较表明前者高估了〜20-30%,但捕获了高度保真度的观察到的AOD动态。案例研究突出了利用地球静止FRP数据推动消防排放估计的潜力,以便在大气传输模型中使用,例如在监测大气组成和气候(MACC)系列凸轮的项目中。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号