首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18
【24h】

Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18

机译:C4F10,C5F12,C6F14,C7F16和C8F18的全球排放估计和辐射影响

获取原文
           

摘要

Global emission estimates based on new atmospheric observations are presented for the acylic high molecular weight perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14), hexadecafluoroheptane (C7F16) and octadecafluorooctane (C8F18). Emissions are estimated using a 3-dimensional chemical transport model and an inverse method that includes a growth constraint on emissions. The observations used in the inversion are based on newly measured archived air samples that cover a 39-yr period, from 1973 to 2011, and include 36 Northern Hemispheric and 46 Southern Hemispheric samples. The derived emission estimates show that global emission rates were largest in the 1980s and 1990s for C4F10 and C5F12, and in the 1990s for C6F14, C7F16 and C8F18. After a subsequent decline, emissions have remained relatively stable, within 20%, for the last 5 yr. Bottom-up emission estimates are available from the Emission Database for Global Atmospheric Research version 4.2 (EDGARv4.2) for C4F10, C5F12, C6F14 and C7F16, and inventories of C4F10, C5F12 and C6F14 are reported to the United Nations' Framework Convention on Climate Change (UNFCCC) by Annex 1 countries that have ratified the Kyoto Protocol. The atmospheric measurement-based emission estimates are 20 times larger than EDGARv4.2 for C4F10 and over three orders of magnitude larger for C5F12 (with 2008 EDGARv4.2 estimates for C5F12 at 9.6 kg yr?1, as compared to 67±53 t yr?1 as derived in this study). The derived emission estimates for C6F14 largely agree with the bottom-up estimates from EDGARv4.2. Moreover, the C7F16 emission estimates are comparable to those of EDGARv4.2 at their peak in the 1990s, albeit significant underestimation for the other time periods. There are no bottom-up emission estimates for C8F18, thus the emission rates reported here are the first for C8F18. The reported inventories for C4F10, C5F12 and C6F14 to UNFCCC are five to ten times lower than those estimated in this study. In addition, we present measured infrared absorption spectra for C7F16 and C8F18, and estimate their radiative efficiencies and global warming potentials (GWPs). We find that C8F18's radiative efficiency is similar to trifluoromethyl sulfur pentafluoride's (SF5F3) at 0.57 W m?2 ppb?1, which is the highest radiative efficiency of any measured atmospheric species. Using the 100-yr time horizon GWPs, the total radiative impact of the high molecular weight perfluorocarbons emissions are also estimated; we find the high molecular weight PFCs peak contribution was in 1997 at 24 000 Gg of carbon dioxide (CO2) equivalents and has decreased by a factor of three to 7300 Gg of CO2 equivalents in 2010. This 2010 cumulative emission rate for the high molecular weight PFCs is comparable to: 0.02% of the total CO2 emissions, 0.81% of the total hydrofluorocarbon emissions, or 1.07% of the total chlorofluorocarbon emissions projected for 2010 (Velders et al., 2009). In terms of the total PFC emission budget, including the lower molecular weight PFCs, the high molecular weight PFCs peak contribution was also in 1997 at 15.4% and was 6% of the total PFC emissions in CO2 equivalents in 2009.
机译:基于新的大气观察的全球排放估计用于酰基高分子量全氟烃(PFC):癸氟丁烷(C4F10),十二烷氟戊烷(C5F12),四氟己烷(C6F14),十六氟庚烷(C7F16)和十八烷氟胆烷(C8F18)。利用三维化学传输模型和包括在排放的生长限制的逆方法估计排放。反演中使用的观察结果基于新测量的存档空气样本,其涵盖了39年至2011年的39年期间,包括36个半球和46个半球样品。衍生的排放估计表明,全球排放率是20世纪80年代和1990年代最大的C4F10和C5F12,并在20世纪90年代,用于C6F14,C7F16和C8F18。在随后的下降之后,过去5年内,排放量在20%以内相对稳定。从全球大气研究版本4.2(EDGARV4.2)的发射数据库提供自下而上的排放估计,C4F10,C5F12,C6F14和C7F16以及C4F10,C5F12和C6F14的清单报告给“联合国气候框架公约”更改(UNFCCC)由附件1批准京都议定书的国家。基于大气测量的排放估计比C4F10的EDGARV4.2大20倍,对于C5F12,超过3个幅度的数量级(2008年EDGARV4.2估计为9.6千克YR?1,与67±53 T YR相比?1,如本研究中得出的)。 C6F14的衍生发射估计在很大程度上同意Edgarv4.2的自下而上估计。此外,C7F16排放估计与EDGARV4.2在20世纪90年代的峰值上相当,尽管对其他时间段有显着低估。对于C8F18没有自下而上的排放估计,因此这里报道的排放率是C8F18的第一。报告的C4F10,C5F12和C6F14至UNFCCC的库存比本研究估计的5至10倍。此外,我们为C7F16和C8F18提供了测量的红外吸收光谱,并估计其辐射效率和全球变暖潜力(GWP)。我们发现C8F18的辐射效率类似于在0.57WM≤2ppbα1的三氟甲基硫(SF5F3)中,这是任何测量的大气种类的最高辐射效率。使用100年的时间范围GWP,估计高分子量全氟化碳排放的总辐射影响;我们发现高分子量PFCS峰值贡献是1997年的二氧化碳(CO2)等同物的24 000克二氧化碳(CO2)等同物,并在2010年减少了二氧化碳当量的三倍至7300克。该2010年的累积排放率为高分子量PFCs可比:总二氧化碳排放量的0.02%,占氢氟烃排放总量的0.81%,或2010年预计的氯氟烃排放总量的1.07%(Velders等,2009)。就PFC排放预算的总量而言,包括较低的分子量PFC,高分子量PFCS峰值贡献也在1997年以15.4%,2009年CO2当量中的总PFC排放量为6%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号