首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study
【24h】

What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study

机译:温室气体观察系统要求还原基本的生物地球化学过程不确定性吗?亚马逊湿地CH4排放作为一个案例研究

获取原文
           

摘要

Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging. Consequently, top-down or integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based estimates of greenhouse gas fluxes – such as CO2 and CH4 – could potentially provide the constraints needed to resolve biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing system (OS) requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve monthly CH4 fluxes at a ~?333?km resolution and with a ≤?10?mg?CH4?m?2?day?1 flux precision. We simulate a range of low-earth orbit (LEO) and geostationary orbit (GEO) CH4 OS configurations to evaluate the ability of these approaches to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ~?333?km Amazon wetland fluxes at a 17.0 and 2.7?mg?CH4?m?2?day?1 median uncertainty level. Improving LEO CH4 measurement precision by 2 would only reduce the median CH4 flux uncertainty to 11.9?mg?CH4?m?2?day?1. A GEO mission with targeted observing capability could resolve fluxes at a 2.0–2.4?mg?CH4?m?2?day?1 median precision by increasing the observation density in high cloud-cover regions at the expense of other parts of the domain. We find that residual CH4 concentration biases can potentially reduce the ~?5-fold flux CH4 precision advantage of a GEO mission to a ~?2-fold advantage (relative to a LEO mission). For residual CH4 bias correlation lengths of 100?km, the GEO can nonetheless meet the ?≤??10?mg CH4?m?2?day?1 requirements for systematic biases ≤?10?ppb. Our study demonstrates that process-driven greenhouse gas OS simulations can enhance conventional uncertainty reduction assessments by quantifying the OS characteristics required for testing biogeochemical process hypotheses.
机译:了解控制陆地碳势态的过程是气候科学的大挑战之一。碳循环过程控制在当地秤上易于研究,但整合在极其异质的生物群中的本地知识,地貌和气候空间已被证明是非常具有挑战性的。因此,处理相关尺度的自上而下或积分通量约束对于降低过程不确定性至关重要。未来的基于卫星的温室气体通量 - 例如CO2和CH4 - 可能会提供在所需尺度处解决生物地态过程控制所需的约束。我们的分析专注于亚马逊湿地CH4排放,这适合科学上至关重要,挑战性挑战性的案例研究。我们定量导出以过程相关规模测试湿地CH4排放假设的观察系统(OS)要求。区分亚马逊湿地CH4生产上的假设水文和碳控制,卫星使命需要在a〜333〜333 km分辨率和≤10?mg?ch4?2?日?1助焊剂精度。我们模拟了一系列低地轨道(LEO)和地球静止轨道(GEO)CH4 OS配置,以评估这些方法满足CH4通量要求的能力。传统的狮子座和地理任务决定每月〜?333亚马逊湿地通量在17.0和2.7?mg?ch4?m?2?日?1个中位不确定性水平。通过2改善Leo CH4测量精度仅将中位数CH4通量不确定性降低到11.9?MG?CH4?M?2?日?1。具有目标观察能力的地理特派团可以在2.0-2.4毫克(2.4mg)中解析助焊剂吗?Ch4?M?2?日?1个中值通过增加域的其他部分的高云覆盖区域中的观察密度。我们发现残留的CH4浓度偏差可能会降低〜〜5倍的磁通CH4精确优势,对〜2倍的优势(相对于Leo任务)。对于残留的CH4偏置相关长度为100Ωkm,Geo可以仍然可以满足?≤α≤10?mg Ch4?m?2?日?1系统偏差的要求≤10≤ppb。我们的研究表明,过程驱动的温室气体OS仿真可以通过量化测试生物地造理过程假设所需的OS特性来增强常规的不确定性降低评估。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号