首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system
【24h】

Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

机译:通过全球多区域双向耦合模型系统改进了对流层臭氧的模拟

获取原文
           

摘要

Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3), but these processes are not captured by current global chemical transport models (CTMs) and chemistry–climate models that are limited by coarse horizontal resolutions (100–500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5°?long.??×??2°?lat.) and its three nested models (at 0.667°?long.??×??0.5°?lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs) from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420?sites from the World Data Centre for Greenhouse Gases (WDCGG), the United States National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory Global Monitoring Division (GMD), the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP), and the United States Environmental Protection Agency Air Quality System (AQS)), aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC)) and satellite measurements (two Ozone Monitoring Instrument (OMI) products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0–9 km) mean bias by 3–10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions. Within the nested domains, the two-way coupled simulation reduces surface ozone biases relative to typical GEOS-Chem one-way nested simulations, due to much improved LBCs. The bias reduction is 1–7?times the bias reduction from the global to the one-way nested simulation. Improving model representations of small-scale processes is important for understanding the global and regional tropospheric chemistry.
机译:小规模非线性化学和物理过程对污染源区影响了对流层臭氧(O3),但这些过程不会被当前全球化学传输模型(CTMS)和化学 - 气候模型捕获,这些方法受粗略分辨率限制(100- 500公里,通常是200公里)。这些模型往往含有北半球的大(且大多数阳性)对流层O3偏见。在这里,我们使用Geos-Chem CTM的最近建立的双向耦合系统于2009年模拟区域和全球对流层O3。该系统致力于全局模型(2.5°〜6. ??×2°?LAT 。)及其三种嵌套型号(0.667°左右。??××0.5°......)分别覆盖亚洲,北美和欧洲。具体而言,嵌套模型从全局模型中取出横向边界条件(LBC),更好地捕获小规模过程并反馈以修改嵌套域内的全局模型模拟,随后对其LBC的影响。与单独的全球模型相比,双向耦合系统更好地模拟嵌套域内和外部的对流层O3,如通过评估到一套地面(1420个?来自世界数据中心的温室气体(WDCGG) ,美国国家海洋和大气管理局(NOAA)地球系统研究实验室全球监测部门(GMD),欧洲监测和评估计划的化学协调中心(EMEP),以及美国环保局空气质量体系(AQS) ),飞机(用于环境研究的高性能仪器机载平台(Hiaper)极点观测(Hippo)和空中客车中的臭氧和水蒸气的测量)和卫星测量(两个臭氧监测仪器(OMI)产品)。双向耦合模拟增强了下午平均表面O3的日常变化中的相关性,地面测量为0.53至0.68,降低了从10.8到6.7 ppb的平均模型偏差。地区,耦合系统通过欧洲的4.6 ppb,北美3.9ppb和其他地区的3.1 ppb减少了4.6 ppb。双向耦合带来o3垂直型材更接近河马(对于偏远地区)和Mozaic(用于污染区域)数据,减少到最多的Mozaic网站上的3-10 ppb的偏差(0-9公里),并通过河马简介5.3 PPB。双向耦合仿真也将全球对象柱臭氧减少3.0 du(9.5%,年均平均值),使它们更接近所有季节的OMI数据。另外,双向耦合模拟还通过改善甲基氯仿和甲烷寿命的估计减少了全局对流层平均羟基。北半球模拟改进更为显着,主要由化学/排放中的空间不均匀性提高。在嵌套域内,双向耦合仿真可减少相对于典型的Geos-Chem单向嵌套嵌套模拟的表面臭氧偏差,这是由于LBC大大改进。偏差减小为1-7?倍率从全局到单向嵌套模拟的偏差减少。改善小规模过程的模型表示对于了解全球和区域对流主义化学是重要的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号