首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses
【24h】

Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

机译:使用统计氧化模型模拟区域空气质量模型中的二次有机气溶胶。第2部分:评估蒸气壁损失的影响

获取原文
           

摘要

The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the University of California at Davis / California Institute of Technology (UCD/CIT) regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approach of Zhang et al.?(2014). Two vapor wall-loss scenarios are considered when fitting of SOM to chamber data to determine best-fit SOM parameters, one with “low” and one with “high” vapor wall-loss rates to approximately account for the current range of uncertainty in this process. Simulations were run using these different parameterizations (scenarios) for both the southern California/South Coast Air Basin (SoCAB) and the eastern United States (US). Accounting for vapor wall losses leads to substantial increases in the simulated SOA concentrations from volatile organic compounds (VOCs) in both domains, by factors of ?~??2–5 for the low and ?~??5–10 for the high scenarios. The magnitude of the increase scales approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, the predicted SOA fraction of total organic aerosol (OA) increases from ?~??0.2 (no) to ?~??0.5 (low) and to ?~??0.7 (high), with the high vapor wall-loss simulations providing best general agreement with observations. In the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses are accounted for. The total OA?∕?ΔCO ratio captures the influence of dilution on SOA concentrations. The simulated OA?∕?ΔCO in SoCAB (specifically, at Riverside, CA) is found to increase substantially during the day only for the high vapor wall-loss scenario, which is consistent with observations and indicative of photochemical production of SOA. Simulated O?:?C atomic ratios for both SOA and for total OA increase when vapor wall losses are accounted for, while simulated H?:?C atomic ratios decrease. The agreement between simulations and observations of both the absolute values and the diurnal profile of the O?:?C and H?:?C atomic ratios for total OA was greatly improved when vapor wall-losses were accounted for. These results overall demonstrate that vapor wall losses in chambers have the potential to exert a large influence on simulated ambient SOA concentrations, and further suggest that accounting for such effects in models can explain a number of different observations and model–measurement discrepancies.
机译:最近建立了有机蒸汽损失对腔室壁的影响最近已经建立了次要有机气溶胶(SOA)形成实验。在这里,在加州大学在戴维斯/加利福尼亚州理工学院(UCD / CIT)区域空气质量模型中评估了这种损失对模拟的环境SOA浓度和性质的影响,使用统计氧化模型(SOM)进行SOA。 SOM适合于实验室数据,并且在Zhang等人的方法之后,没有考虑蒸气壁损失。(2014)。当SOM拟合到腔室数据时,考虑两个蒸汽壁损失方案,以确定最适合的SOM参数,一个具有“低”,一个具有“高”蒸气壁损失的速率,以近似占当前不确定性范围内的过程。使用这些不同的参数(方案)来运行模拟,适用于南加州/南海岸航空盆地(SOCAB)和美国东部(美国)。蒸汽壁损失的核算导致模拟的SOA浓度在两个域中的挥发性有机化合物(VOC)中的浓度增加,其因素为低频和Δω2-5,高情景。随着无损耗方案的绝对SOA浓度,增加尺寸的幅度大致相反。在Socab中,预测的SOA分数的总机气溶胶(OA)从α-〜2 0.2(不)增加到?〜?? 0.5(低)和~~ ?? 0.7(高),具有高蒸气壁 - 损失模拟提供最佳普通协定的观察。在美国东部,在所有情况下,SOA分数很大,但是当蒸气壁损失被占时,进一步增加。总OA?/?ΔCo比捕获稀释对SOA浓度的影响。模拟的OA?/?ΔCo在Socab(具体地说,在滨江,加利福尼亚河),仅在当天仅对高蒸汽壁损地的日期增加,这与观察结果一致并指示SOA的光化学产生。模拟o?:ωCOA的C原子比和总OA增加,当蒸汽壁损失时,在模拟的H?:?C原子比减少。模拟与o的差值与观察之间的协议和o?:?c和h?:?当蒸气壁损失占蒸气壁损失时,总oa的原子比率大大提高。这些结果总体上表现出腔室中的蒸气壁损失具有对模拟的环境SOA浓度产生很大影响的潜力,并进一步表明,在模型中占这些效果可以解释许多不同的观察和模型测量差异。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号